Method of Determining the Initial Stiffness Modulus for Trabecular Bone under Stepwise Load

Article Preview

Abstract:

In this work was presented method of initial stiffness modulus E0 calculation based on fatigue tests of trabecular bone under stepwise load. The investigation was performed on 61 cylindrical bone samples obtained from the neck of different femur heads. The bone sample fatigue tests were carried out under compression with stepwise increases of the applied load. The obtained values of the initial stiffness modulus E0 were consistent with literature data and can be used to determine the S-N curve for trabecular bone using the hypotheses of fatigue damage accumulation. It was also an unsuccessful attempt to find a statistical relationship between the values of the initial stiffness modulus E0 and indices of bone structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-89

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Zioupos P., Casinos A.: Cumulative damage and the response of human bone in two-step loading fatigue, Journal of Biomechanics 1998, 31(9): 825-833

DOI: 10.1016/s0021-9290(98)00102-x

Google Scholar

[2] Kosmopoulos V., Keller T.S: Predicting trabecular bone microdamage initiation and accumulation using a non-linear perfect damage model. Medical Engineering and Physics 2008, 30: 725-732

DOI: 10.1016/j.medengphy.2007.02.011

Google Scholar

[3] Rapillard L., Charlebois M., Zysset P.K.: Compressive fatigue behavior of human vertebral trabecular bone, Journal of Biomechanics 2006, 39(11): 2133-2139

DOI: 10.1016/j.jbiomech.2005.04.033

Google Scholar

[4] Tang S.Y., Vashishth D.: A non-invasive in vitro technique for the three-dimensional quantification of microdamage in trabecular bone. Bone 2007, 40: 1259-1264

DOI: 10.1016/j.bone.2006.10.031

Google Scholar

[5] Cotton J.R., Winwood K., Zioupos P., Taylor M.: Damage rate is a predictor of fatigue life and creep strain rate in tensile fatigue of human cortical bone samples. Journal of Biomechanical Engineering 2005, 127: 213-219

DOI: 10.1115/1.1865188

Google Scholar

[6] Haddock S.M., Yeh O.C., Mummaneni P.V., Rosenberg W.S., Keaveny T.M.: Similarity in the fatigue behavior of trabecular bone across site and species. Journal of Biomechanics 2004, 37(2): 181-187

DOI: 10.1016/s0021-9290(03)00245-8

Google Scholar

[7] Michel M.C., Guo X.E., Gibson L.J., McMahon T.A., Hayes W.C.: Compressive fatigue behavior of bovine trabecular bone. J Biomechanics 1993, 26(4/5): 453-463

DOI: 10.1016/0021-9290(93)90009-4

Google Scholar

[8] Pattin C. A., Caler W. E., Carter D. R.: Cyclic mechanical property degradation during fatigue loading of cortical bone, Journal of Biomechanics 1996, 29(1): 69-79

DOI: 10.1016/0021-9290(94)00156-1

Google Scholar

[9] Ganguly P., Moore T.L. A., Gibson L.J.: Analysis of fatigue damage in bovine trabecular bone. www.asbweb.org

Google Scholar

[10] Moore T.L., Gibson L.J.: Fatigue of Bovine Trabecular Bone. Journal of Biomechanical Engineering 2003, 125: 761-768

DOI: 10.1115/1.1631583

Google Scholar

[11] Landgraf R.W., Morrow J., Endo T.: Determination of the cyclic stress-strain curve. J of Materials 1969, 4: 1621-1653

Google Scholar

[12] Janzen W., Ehrenstein G.W.: Bemessungsgrenzen von glasfaserverstärktem PBT bei schwingender Beanspruchung. Kunststoffe 1991, 81(3): 231-236

Google Scholar

[13] Orth F., Hoffmann L., Zilch-Bremer H., Ehrenstein G.W.: Evaluation of composites under dynamic load. Composite Structure 1993, 24(3): 265-272

DOI: 10.1016/0263-8223(93)90220-k

Google Scholar

[14] El Fray M.: A long-term mechanical fatigue examination of thermoplastic elastomers. Elastomery 2004, 8(5): 15-19

Google Scholar

[15] Casado J.A., Carrascal I., Polanco J.A., Gutiérrez-Solana F.: Fatigue failure of short glass fibre reinforced PA 6.6 structural pieces for railway track fasteners. Engineering Failure Analysis 2006, 13(2): 182-197

DOI: 10.1016/j.engfailanal.2005.01.016

Google Scholar

[16] Dendorfer S., Maier H.J., Taylor D., Hammer J.: Anisotropy of the fatigue behaviour of cancellous bone. J Biomech. 2008; 41(3): 636-41

DOI: 10.1016/j.jbiomech.2007.09.037

Google Scholar

[17] Topoliński T., Cichański A., Mazurkiewicz A., Nowicki K., Study of the behavior of the trabecular bone under cyclic compression with stepwise increasing amplitude, Journal of the Mechanical Behavior of Biomedical Materials 2011, Vol. 4, No. 8: 1755-1763

DOI: 10.1016/j.jmbbm.2011.05.032

Google Scholar

[18] Topoliński T., Cichański A., Mazurkiewicz A., Nowicki K., Applying a stepwise load for calculation of the S-N curve for trabecular bone based on the linear hypothesis for fatigue damage accumulation, Fatigue Failure and Fracture Mechanics 2012, In Press

DOI: 10.4028/www.scientific.net/msf.726.39

Google Scholar