Microstructural and Mechanical Properties Changes of Silicon Nitride Based Ceramic Using Post-Sintering Heat Treatment

Article Preview

Abstract:

Si3N4 based ceramics are widely researched because of their low density, high hardness, toughness and wear resistance. Post-sintering heat treatments can enhance their properties. Thus, the objective of the present paper was the development of a Si3N4 based ceramic, suitable for structural applications, by sintering in nitrogen gas pressure, using AlN, Al2O3, and Y2O3 as additives and post-sintering heat treatment. The green bodies were fabricated by uniaxial pressing at 80 MPa with subsequent isostatic pressing at 300 MPa. The samples were sintered at 1900°C for 1 h under N2 gas pressure of 0.1 MPa. Post-sintering heat treatment was performed at 1500°C for 48 h under N2 gas pressure of 1.0 MPa. From the results, it was observed that after post-sintering heat treatment there was a reduction of α-SiAlON phase and increase of β-Si3N4 phase, with consequent changing in grain size, decrease of fracture toughness and increase of the Vickers hardness.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

1085-1091

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.V.C. Souza, C. Santos, C.A. Kelly O.M.M. Silva: International Journal of Refractory Metals and Hard Materials Vol. 25 (2007) p.77.

Google Scholar

[2] J.J.M. Martínez and A.R. Domínguez: Progress in Materials Science 49 (2004), p.19.

Google Scholar

[3] C. Santos, S. Ribeiro, K. Strecker, and L.E.G. Silva: Acta Microscópica Vol. 12, (2003), p.83.

Google Scholar

[4] J.V.C. Souza, M.C.A. Nono, M.V. Ribeiro, O.M.M. Silva, F.C.L. Melo Materiais cerâmicos: uma tecnologia viabilizadora nos processos de usinagem. In: Feira e Congresso Usinagem 2008, São Paulo, (2008).

Google Scholar

[5] F.L. Riley: Journal of American Ceramic Society 83 (2) (2000), p.245.

Google Scholar

[6] B. Basu, M.H. Lewis, M.E. Smith, M. Bunyard and T. Kemp: J. Eur. Ceram. Soc. Vol. 26 (2006), p.3919.

Google Scholar

[7] S. Hampshire: Mater. Sci. Forum Vol. 606 (2009), p.27.

Google Scholar

[8] M.H. Bocanegra-Bernala and B. Matovic: Mater. Sci. Eng. A Vol. 527 (2010), p.1314.

Google Scholar

[9] Manisha and B. Basu: J. Am. Cer. Soc. 90 (6) (2007), p.1858.

Google Scholar

[10] C. Santos, S. Ribeiro, K. Strecker, P.A. Suzuki, S. Kycia and C.R.M. Silva: Ceramics International Vol. 35 (2009), p.289.

Google Scholar

[11] N.C. Acikbas, A. Kara, S. Turan, F. Kara, H. Mandal and B. Bitterlich: Mater. Sci. Forum Vol. 554 (2007), p.119.

DOI: 10.4028/www.scientific.net/msf.554.119

Google Scholar

[12] C. Santos, K. Strecker, S. Ribeiro, J.V.C. de Souza, O.M.M. Silva and C.R.M. Silva: Materials Letters Vol. 58 (11) (2004), p.1792.

Google Scholar

[13] A.G. Evans and E.A. Charles: Jouranl of American Ceramic Society Vol. 59 (1976), p.371.

Google Scholar

[14] C. Santos, S. Ribeiro, J.K.M.F. Daguano, S.O. Rogero, K. Strecker and C.R.M. Silva: Mater. Sci. Eng. C 27 (2007), p.148.

Google Scholar

[15] N. Hirosaki, S. Ogata and C. Kocer: Physical Review B Vol. 65 (2002) 134110-1-134110-11.

Google Scholar

[16] K.H. Jack: Sialon ceramics: retrospect and prospect. In Silicon Nitride Ceramics-Scientific and Technological Advances, ed. I. W. Chen, P. F. Becher, M. Mitomo, G. Petzow and T. S. Yen. Materials Research Society, Pittsburgh, U.S.A., 1993, p.15.

Google Scholar

[17] S. Bandyopadliyay, M.J. Hoffmann and G. Petzow: Journal of the American Ceramic Society Vol. 79 (1996), p.15.

Google Scholar

[18] J. -L. Huang, Z. -H. Shih, H. -H. Lu and C. -Y. Chen: Mater. Chem. Phys. Vol. 63 (2000), p.116.

Google Scholar

[19] U. Kolitsch, V. Ijevskii, H.J. Seifert, I. Wiedmann and F. Aldinger: Journal of Materials Science Vol. 32 (1997), p.6135.

DOI: 10.1023/a:1018656204229

Google Scholar