Microstructural and Dielectric Properties of Conventional and Microwave Sintered CaCu3Ti4O12 Ceramics

Article Preview

Abstract:

ts well known that CaCu3Ti4O12 (CCTO) ceramic presents high dielectric constants, which makes it a strong candidate to be used in microelectronic devices. Several routes were proposed to obtain CCTO crystalline phase, influencing in microstructure and sintering conditions of the ceramics. In this study CCTO powders were produced by a new chemical route, providing reduction on hold time and sintering temperature. Furthermore, the sintering was performed in conventional and microwave oven that produced different microstructures. In this way, the microstructure and dielectric properties of these ceramics were evaluated and compared, showing the higher values of dielectric constant due to lower grain size and reduced copper-rich phase on grain boundary presented by microwave sintered ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

1063-1068

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Subramanian, D. Li, N. Duan , B. Reisner, A. Sleight: Journal of Solid State Chemistry Vol. 151 (2000), p.323.

Google Scholar

[2] M. Subramanian: Solid State Sciences Vol. 4 (2002), p.347.

Google Scholar

[3] P. Fiorenza, R. L. Nigro, C. Bongiorno, V. Raineri, M.C. Ferarrelli, D.C. Sinclair, A.R. West: Applied Physics Letters Vol. 92 (2008), p.182907.

DOI: 10.1063/1.2919095

Google Scholar

[4] T.T. Fang, L.T. Mei, J Am Ceram Soc. Vol. 90 (2007), p.638.

Google Scholar

[5] B. Bochu, M.N. Deschizeaux, J.C. Joubert: J. Solid State Chem. Vol. 29 (1979), p.291.

Google Scholar

[6] P.B.A. Fechine, A.F.L. Almeida, J.C. Goés, J.M. Sasaki, R. Jimenez, J. Mendiola, A.S.B. Sombra: Mater. Chem. Phys. Vol. 96 (2006), p.402.

Google Scholar

[7] A.F.L. Almeida, R.E.S. Oliveira, J.M. Sasaki, A.S.B. Sombra, L.C. Kretly: Micr. Opt. Technol. Lett. Vol. 39 (2003), p.145.

Google Scholar

[8] L.C. Kretly, A.F.L. Almeida, P.B.A. Fechine, R.S. de Oliveira, A.S.B. Sombra: J. Mat. Sci. Vol. 15 (2004), p.657.

Google Scholar

[9] P.B.A. Fechine, A.F.L. Almeida, J.C. Goés, M.A. Valente, M.A.R. Miranda, A.S.B. Sombra: Mat. Sci. Eng B Vol. 111 (2004), p.113.

Google Scholar

[10] A.F.L. Almeida, R.S. de Oliveira, J.C. Goés, J. M. Sasaki, J. M. Filho, A.S.B. Sombra: Mat. Sci. Eng. B Vol. 96 (2002), p.275.

Google Scholar

[11] Jin S, Xia H, Zhang Y, Guo J, Xu J.: Materials Letters Vol. 61 (2007), p.1404.

Google Scholar

[12] C. Kumar: J Mater Sci: Mater Electron Vol. 22 (2011) p.579.

Google Scholar

[13] B. Barbier, C. Combettes, S. Guillemet-Fritsch, T. Chartier, F. Rossignol, A. Rumeau, T. Lebey, E. Dutarde: Journal of the European Ceramic Society Vol. 29 (2009), p.731.

DOI: 10.1016/j.jeurceramsoc.2008.07.042

Google Scholar

[14] JCPDS Chart Pattern #21-0140 (1997).

Google Scholar

[15] Zhao J, Liu J, Ma G. Ceramics International, In press, (2011).

Google Scholar

[16] Xie Z, Yang J, Huang X, Huang Y. Journal of the European Ceramic Society Vol. 19 (1999), p.381.

Google Scholar

[17] P. Leret, J.F. Fernandez, J. de Frutos, D. Fernandez-Hevia: J. of the Eur. Ceram. Soc. Vol. 27 (2007), p.3901.

Google Scholar

[18] J.J. Romero, P. Leret, F. Rubio-Marcos, A. Quesada, J.F. Fernández. Journal of the European Ceramic Society Vol. 30 (2010), p.737.

DOI: 10.1016/j.jeurceramsoc.2009.08.024

Google Scholar

[19] D.E. Clark, D.C. Folz, J.K. West: Mater. Sci. Eng. A Vol. 287 (2000), p.153.

Google Scholar

[20] S. Hutagalung, M. Ibrahim, Z. Ahmad: Ceramics International Vol. 34 (2008), p.939.

Google Scholar