Comparative Analysis of Sintering Mn0.65Zn0.35Fe2O4 Ferrite by Microwave Energy and N2 Atmosphere

Article Preview

Abstract:

Research in Mn-Zn ferrites have been growing in recent years, mainly because of the properties in high frequency application such as high saturation magnetization, low core losses, which are sensitive to the structure, processing conditions, such as sintering temperature, time and atmosphere. This study aims to evaluate the microstructure and magnetic characteristics Mn0.65Zn0.35Fe2O4 ferrite sintered in N2 atmosphere and to microwave energy at 1200°C/2h. The samples were compacted by uniaxial pressing at 200 MPa and sintered in a microwave oven with a heating rate of 50°C/min and sintering time of 30 min. For samples sintered in N2 atmosphere was used heating rate of 5°C/min with sintering time of 2 hours. The samples were characterized by apparent and bulk density, XRD, SEM and magnetic measurements. The results indicate the formation single phase of Mn-Zn ferrite for sample sintering in N2 atmosphere, and to sintering by microwave oven observed the phase ferrite Mn-Zn with trace of secondary phase hematite. The density and saturation magnetization were 3.14 and 3.12 g/cm3, 5 and 83 emug-1 for the samples sintered by microwave energy and N2 atmosphere respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

1272-1277

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. C. Snelling: Soft ferrites Properties and Applications. Edtied by Butterworth & Co. (Publishers) Ltd. (1988).

Google Scholar

[2] A. Znidarsic. IEEE Transactions on Magnetics. Vol. 31 (1995).

Google Scholar

[3] V. T. Zaspalis, V. Tsakaloudi, M. Kolenbrander. Journal of magnetism and magnetic materials, Vol. 313 (2007), pp.29-36.

DOI: 10.1016/j.jmmm.2006.11.210

Google Scholar

[4] A. Bienkowski, Journal of Physique, Vol. 46 (1985), p.433.

Google Scholar

[5] A. Figuerola, D. R. Corato, L. Manna, T. Pellegrino. Pharmacological Research. Vol. 62 (2010) 126-143.

Google Scholar

[6] Gama A. M. Efeito das proporções de Mn/Zn e Fe/Mn + Zn na temperatura de Curie de ferritas do tipo (Mn + Zn)1-xFe2+xO4+. Dissertação apresentada na escola politécnica da Universidade de São Paulo, (2003).

DOI: 10.11606/t.11.1982.tde-20210104-163552

Google Scholar

[7] C. M. Hung. Journal of rare earths. Especial Issue. Vol. 28 (2010), p.362.

Google Scholar

[8] K. Rao, Journal Applied Physic, Vol. 52 (1981), pp.1376-1379.

Google Scholar

[9] S. J. Ahns, C. S. YOON, S. G. Yoon, C. K. KIM, T.Y. Byun. K. S. Hong. Materials. Science. and Engineering. Vol. B 84 (2001), pp.146-154.

DOI: 10.1016/s0921-5107(00)00585-7

Google Scholar

[10] A. C. F. M. Costa; A. P. A. Diniz, L. Gama,M. R. Morelli, R. H. G. A. Kiminami. Journal Metas. Nanocrystalite Materials. Vol. 20-21 (2004), pp.582-587.

Google Scholar

[11] R. R. Mello. Desenvolvimento de Sensores de Gases à base de Ferritas do Tipo MFe2O4 (M = Mn, Zn e Ni). Dissertação apresentada à Universidade Estadual de Maringá, (2008).

Google Scholar

[12] S. Y. Chou,S. L. Lo, C. H. Hsieh, C. L. Chen, Journal of Hazardous Materials. Vol. 163 (2009), pp.357-362.

Google Scholar

[13] H. Klung, L. Alexander. In : X-ray Diffraction Procedures. Edtied by John Wiley, New York, EUA (1962).

Google Scholar

[14] R. L. P. Santos, Avaliação dos combustíveis uréia e glicina na Síntese por reação de combustão de ferrita Mn0. 65Zn0. 35Fe2O4., Dissertação de Mestrado apresentada à banca da Universidade Federal de Campina Grande – UFCG, (2011).

DOI: 10.24873/j.rpemd.2021.10.846

Google Scholar

[15] C. O. Robert: Modern Magnetic Materials-Principles and Applications. Edtied by A Wiley-Interscience Publication, John Wiley & Sons, New York (1942).

Google Scholar

[16] A. M. Gama, F. J. G. Landgraf, D. Rodrigues, S. R. Janasi, D. Gouvêa. In: 57º Congresso Anual da ABM – Internacional. Vol. 57 (2002), pp.832-841.

Google Scholar

[17] A. C. F. M. Costa, V. J. Silva, C. C. Xin, D. A. Vieira, D. R. Cornejo, R. H. G. A Kiminami. Journal of Alloys and Compounds. Vol, 495 (2010) 503-505.

Google Scholar

[18] J. W. Stcki, B. A. Goodman and U. Schewertmann: Iron in soils and clay minerals. Edtied by D. Reidel Publishine Company, Holland (1985).

Google Scholar

[19] A. M. R. Pimenta. Nanopartículas magnéticas para nanomedicina. Dissertação para obtenção do grau de mestre em Engenharia de Materias. Instituto Superior Técnico, Universidade de Lisboa. Outubro de (2010).

DOI: 10.37423/2022.edcl612

Google Scholar