Preparation of NiFe2O4 and ZnFe2O4 Samples by Combustion Reaction and Evaluation of Performance in Reaction Water Gas Shift Reaction - WGSR

Article Preview

Abstract:

This paper aims to synthesize and characterize nanosized nickel and zinc ferrites (NiFe2O4 and ZnFe2O4) samples by a combustion reaction method, using glycine as fuel. The performance in HT-WGRS reaction the samples was investigated. The results showed that the combustion reaction was effective in the production of major phases of the spinel ferrite (crystallite sizes of 44 and 27 nm) and presence of the secondary phases, such as Ni and ZnO, with surface area 3 and 115 m2/g for NiFe2O4 and ZnFe2O4, respectively. HT-WGSR activity was achieved (80%) to NiFe2O4 ferrite in the temperature range of 300 - 500°C.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

1290-1295

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q. Liu, W. Ma, R. He and Z. Mu, Catal. Today 106 (2005) 5.

Google Scholar

[2] A.C. F. M. Costa, R. T. Lula, R. H. G. A. Kiminami, L. F. V. Gama, A. A. Jesus, H. M. C. Andrade, J. Mater. Sci. 41 (2006) 4871.

Google Scholar

[3] P. T. A. Santos, H. L. Lira, L. Gama, F. Argolo, H. M. C. Andrade, A. C. F. M. Costa, Mater. Sci. Forum. 660-661 (2010) 771-776.

Google Scholar

[4] N. L. Freitas, J. P. Coutinho, M. C. Silva, H. L. Lira, R. H. G. A. Kiminami, A. C. F. M. Costa, Materials Science Forum, 660-661 (2010) 943-947.

DOI: 10.4028/www.scientific.net/msf.660-661.943

Google Scholar

[5] E. Leal, L. S. Neiva, J. -P. La M. L. Sousa, F. Argolo, H. M. C. Andrade, A. C. F. M. Costa, L. Gama, Materials Science Forum, 660-661 (2010) 916-921.

DOI: 10.4028/www.scientific.net/msf.660-661.916

Google Scholar

[6] P. Kumar and R. Idem, Energy Fuels, 21 (2) (2007) 522–529.

Google Scholar

[7] M. L. Kundu, A. C. Sengupta and G. C. Maiti, J. Catal. 112 (1988) 375.

Google Scholar

[8] A. C. F. M. Costa, R. H. G. A. Kiminami, M. R. Morelli, Combustion Synthesis Processing of Nanoceramics In: 'Handbook of Nanoceramics and Their Based Nanodevices, Ed. California: Americam Scientific Publishers, v. 5, pp.80-98, 2008a.

Google Scholar

[9] H. Klung, L. Alexander, in X-ray Diffraction Procedures, Wiley, New York, (1962).

Google Scholar

[10] S. Natesakhawat, X. Wang, L. Zhang, U. S. Ozkan, J. Mol. Cat. A 260 (2006) 82.

Google Scholar

[11] Y. Jin, A. K. Datye, J. Catal. 196 (2000) 8.

Google Scholar

[12] A. Venugopal, M. S. Scurrell, Appl. Catal. A 258 (2004) 241.

Google Scholar

[13] Jones, B. McNicol, in Temperature Programmed Reduction for Solid Materials Characterization, Marcel Dekker, New York, (1986).

Google Scholar

[14] D. G. Rethwisch, J. A. Dumesic, Appl. Catal. A 21 (1986) 97.

Google Scholar

[15] M. Tinkle, J. A. Dumesic, J. Catal. 103 (1987) 65.

Google Scholar