Precursors Influence on CaCu3Ti4O12 Synthesis

Article Preview

Abstract:

In this work CCTO have been synthesized in two different chemical precursors: calcium hydroxide and copper sulfate were used to compose CCTO-S powder while calcium carbonate and copper nitrate were used to form CCTO-N powder. Calcinations conditions were dramatically different in terms of shelf time and temperature. The CCTO phase was fully obtained for 3 hours of calcination in CCTO-N against the 24 hours to form the same phase in CCTO-S powder. Ceramic bodies densities values for CCTO-S samples were 95% of theoretical density (5.05 g/cm3) and 98% for CCTO-N. The dielectric constant, at room temperature, was obtained for ceramics processed by two routes. Microstructural analysis was conducted by Scanning Electron Microscopy (SEM) and it was performed to explain the dielectric constant differences between CCTO-S and CCTO-N ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

1313-1316

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Subramanian., D. Li, N. Duan, B.A. Reisner, A.W. Sleight: J. Solid State Chem. Vol. 151 (2000), p.323.

Google Scholar

[2] A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro: Solid State Commun. Vol. 115 (2000), p.217.

DOI: 10.1016/s0038-1098(00)00182-4

Google Scholar

[3] C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez: Science Vol. 293 (2001), p.673.

Google Scholar

[4] M.A. Subramanian, A.W. Sleight: Solid State Sciences, Vol. 4 (2002), p.347.

Google Scholar

[5] T.B. Adams, D. C. Sinclair and A. R. West: Phys. Rev. B, Vol. 73 (2006), p.094124.

Google Scholar

[6] G. Chiodelli, , V. Massarotti, , D. Capsoni, , M. Bini, , C. B. Azzoni, , M. C. Mozzati: Solid State Commun. Vol. 132 (2004), p.241.

DOI: 10.1016/j.ssc.2004.07.058

Google Scholar

[7] S. Guillemet-Fritsch, T. Lebey, M. Boulos B. Durand: J. Eur. Ceram. Soc. Vol. 26 (2006), p.1245.

Google Scholar

[8] M.A. Ramírez, P.R. Bueno, E. Longo, J.A. Varela: J. Phys. D: Appl. Phys. Vol. 41 (2008), p.152004.

Google Scholar

[9] L.A. Ramajo, M.A. Ramíres, P.R. Bueno, M.M. Reboredo, M.S. Castro: Materials Research Vol. 11 (2008), p.85.

Google Scholar

[10] T. Li, Z. Chen, Y. Su, L. Su, J. Zhang: J Mater Sci., Vol. 44 (2009), p.6149.

Google Scholar

[11] L.V. Azároff, Elements of X-Ray Crystalligraphy. McGraw-Hill: New York, (1968).

Google Scholar

[12] F.L. Almeida, P.B. Fechine, M.P.F. Graça, M. Valente, S.B. Sombra: J. of Materials Science: Materials in Electronics Vol. 20 (2008), p.163.

Google Scholar

[13] J.J. Romero, P. Leret, F. Rubio-Marcos, A. Quesada, J.F. Fernández. Journal of the European Ceramic Society Vol. 30 (2010), p.737.

DOI: 10.1016/j.jeurceramsoc.2009.08.024

Google Scholar

[14] P. Leret, J.F. Fernandez, J. de Frutos, D. Fernandez-Hevia: J. of the Eur. Ceram. Soc. Vol. 27 (2007), p.3901.

Google Scholar

[15] Xie Z, Yang J, Huang X, Huang Y. Journal of the European Ceramic Society Vol. 19 (1999), p.381.

Google Scholar

[16] D.E. Clark, D.C. Folz, J.K. West: Mater. Sci. Eng. A, Vol. 287 (2000), p.153.

Google Scholar

[17] S. Hutagalung, M. Ibrahim, Z. Ahmad: Ceramics International Vol. 34 (2008), p.939.

Google Scholar