Combustion Synthesis of ZnAl2O4 Catalyst Using Glycine as Fuel for the Esterification and Transesterification of Soybean Oil: Influence the Form of Heating

Article Preview

Abstract:

The aim of this work is to evaluate the esterification and transesterification activity of ZnAl2O4 catalysts obtained by different ways of heating during the combustion synthesis using glycine as fuel. Samples were prepared according to the propellants and explosives theory using a vitreous silica crucible as container, and as heating source, plate, muffle furnace and microwave oven. After synthesis, the samples were structural and morphologically characterized by: XRD, nitrogen adsorption and carbon content analysis, and employed in the esterification and transesterification reactions, the percentage of biodiesel formed (FAME) was determined by gas chromatography. The samples obtained on the plate, muffle furnace and microwave showed that even using different heating ways, led to the formation of ZnAl2O4 as majority phase, with crystallite sizes of 11, 15 and 10 nm, respectively. The samples present values of surface area ranging from 16 to 77 m2/g, particle size from 17 to 81 nm, and carbon content lower than 11%. The forms used for heating influenced the esterification and transesterification reactions, showing that there was a gap in the production of biodiesel, which is a promising indication that this material has potential to be used as catalysts on the biodiesel production.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

1323-1328

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. Shuchrdt, R. Sercheli, M. Vargas: J. Braz. Chem. Soc. Vol. 9 (1998), p.190.

Google Scholar

[2] L. C. Meher, D. V. Sagar, S. N. Naik: Renew. Sustain. Energy Rev. Vol. 10 (2004), p.248.

Google Scholar

[3] C. A. Souza. Sistemas Catalíticos na Produção de Biodiesel por meio de Óleo Residual. Encontro de Energia no Meio Rural, Ano 6 (2006).

DOI: 10.29327/eneqpe2020.246108

Google Scholar

[4] P. A. Z. Suarez, S. M. P. Meneghetti: Química Nova. Vol. 30 (2007), p.667.

Google Scholar

[5] F. Ma, M. A. Hanna: Biores. Tech. Vol. 70 (1999), p.1.

Google Scholar

[6] A. C. Pinto, L. L. N. Guarieiro, M. J. C. Rezende, N. M. Ribeiro, E. A. Torres, W. A. Lopes, P. A. P. Pereira, J. B. Andrade: J. Braz. Chem. Soc. Vol. 16 (2005), p.1313.

DOI: 10.1590/s0103-50532005000800003

Google Scholar

[7] G. P. A. G. Pousa. Avaliação do Desempenho de Óxidos Metálicos em Reações de Esterificação de Ácidos Graxos obtidos a partir do Óleo de Soja para Produção de Biodiesel. 2007. 55f. Dissertação (Mestrado em Química) – Instituto de Química, Universidade de Brasília, Brasília – DF, (2007).

DOI: 10.14393/ufu.te.2022.286

Google Scholar

[8] N. L. Freitas, J. P. Coutinho, M. C. Silva, H. L. Lira, R. H. G. A. Kiminami, A. C. F. M. Costa: Mater. Sci. Forum. Vol. 660-661 (2010), p.943.

Google Scholar

[9] A. C. F. M. Costa, P. S. Junior, D. A. Vieira, V. J. Silva, T. S. Barros, D. R. Cornejo, R. H. G. A. Kiminami: Cerâmica. Vol. 55 (2009), p.78.

Google Scholar

[11] C. -C. Hwang, J. -S. Tsai, T. -H. Huang: Mater. Chem. Phys. Vol. 93 (2005), p.330.

Google Scholar

[12] IUPAC, International Union of Pure and Applied Chemistry, Handbook. Vol. 2 (1976), p.57.

Google Scholar

[16] S.R. Jain, K.C. Adiga and V. Pai Verneker: Comb. Flame, Vol. 40 (1981), p.71.

Google Scholar

[17] H. Klung and L. Alexander, in: X-ray diffraction procedures, Wiley, New York, EUA (1962).

Google Scholar

[18] J.S. Reed, in: Principles of Ceramic Processing, 2nd Ed., edited by John Wiley & Sons, New York (1995).

Google Scholar