Synthesis of Zeolitic Materials Using as a Source of SiO2 and Al2O3 Calcined Kaolin Waste

Article Preview

Abstract:

This paper has as main objective synthesize zeolitic materials in hydrothermal conditions using as the predominant source of Si and Al a waste in powder generated from kaolin processing industries for paper-coating from the Brazilian Amazon region, thus transforming a material of low commercial value in another with higher added value, and can thus be used in future in adsorption and catalysis. For this were tested compositions of the mixture with different molar ratios of Na2O/Al2O3 and SiO2/Al2O3 considering the effects time-temperature of crystallization. The starting material and the phases formed as synthetic products were characterized by XRD, SEM and FTIR. The results show that the methodology developed with metakaolinite from a thermically activated kaolin waste at 700 º C for 2h reacting in alkaline medium in the presence of an additional source of silica, zeolitic phases were obtained with structure FAU-type and GIS-type in the samples synthesized.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

1349-1354

Citation:

Online since:

August 2012

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Information on http: /www. dnpm. org. br.

Google Scholar

[2] M.S. Barata and D.C. C Dal Molin: Ambient. Constr. Vol. 2 (2002), pp.69-78.

Google Scholar

[3] S.M.P. Flores and R.F. Neves: Cerâmica Vol. 43 (1997), pp.175-179.

Google Scholar

[4] A.A.B. Maia, R.S. Angélica and R.F. Neves: Cerâmica Vol. 54 (2008), pp.345-350.

Google Scholar

[5] S.P.A. Paz, R.S. Angélica and R.F. Neves: Quím. Nova Vol. 33 (2010), pp.579-583.

Google Scholar

[6] A.A.B. Maia, R.S. Angélica and R.F. Neves: Clay Miner. Vol. 46 (2011), pp.127-136.

Google Scholar

[7] S. Chandrasekhar and P.N. Pramada: J. Porous Mater. Vol. 6 (1999), pp.283-297.

Google Scholar

[8] D.C. Lin, X.W. Xu, F. Zuo, Y.C. Long: Micropor. Mesopor. Mater. Vol. 70 (2004) pp.63-70.

Google Scholar

[9] M.L. Mignoni, D.I. Petkowicz, N.R.C.F. Machado and S.B.C. Pergher: Appl. Clay Sci. Vol. 41 (2008), pp.99-104.

Google Scholar

[10] A.S. Kovo, O. Hernandez and S.M. Holmes: J. Mater. Chem. Vol. 19 (2009), pp.6207-6212.

Google Scholar

[11] T.S. Jamil, H.S. Ibrahim, I.H. El-Maksoud and S.T. El-Wakeel: Desalination Vol. 258 (2010), pp.34-40.

Google Scholar

[12] D.W. Breck: Zeolitic Molecular Sieves (Wiley, New York 1974).

Google Scholar

[13] C. Baerlocher, W.M. Meier and D.H. Olson: Atlas of zeolite framework (Elsevier 5th ed., Amsterdam 2001).

Google Scholar

[14] X. Liu, Z. Yan, H. Wang and Y. Luo: J. Nat. Gas Chem. Vol. 12 (2003) pp.63-70.

Google Scholar

[15] H.L. Zubowa, H. Kosslick, D. Muller, M. Richter, L. Wilde and R. Fricke: Micropor. Mesopor. Mater. Vol. 109 (2008), pp.542-548.

Google Scholar

[16] A. Dyer: An Introduction to Zeolite Molecular Sieves (JohnWiley & Sons, New York 1988).

Google Scholar

[17] L. Heller-Kallai and I. Lapide: Appl. Clay Sci. Vol. 35 (2007), pp.99-107.

Google Scholar

[18] P.S. Santos: Ciência e Tecnologia de Argilas, (Edgar Blucher 2 ed., Vol. 1, São Paulo 1989).

Google Scholar

[19] B.S. Carneiro, R.S. Angélica, T. Scheller, E.A.S. Castro and R.F. Neves: Cerâmica Vol. 49 (2003), pp.237-244.

Google Scholar

[20] J. Cuadros and T. Dudek: Clays Clay Miner. Vol. 54 (2006) pp.1-11.

Google Scholar

[21] B.R. Albert, A.K. Cheetham, J.A. Stuart and C.J. Adams: Micropor. Mesopor. Mater. Vol. 21 (1998), pp.133-142.

Google Scholar

[22] C. Kosanovic, K. Havancsák, B. Subotic, V. Svetlicic, T.M. Radic, Á. Cziráki, G. Huhn, I. Buljan and V. Smrecki: Micropor. Mesopor. Mater. Vol. 142 (2011) pp.139-146.

Google Scholar