A General Coercivity Model for Soft Magnetic Materials

Article Preview

Abstract:

The effect of crystalline imperfections (as for instance, grain size, inclusions and dislocations) on the coercivity of soft magnetic materials is additive. This only can be explained by an Energy Balance Model. By another hand, the angular dependence of the coercivity only can be explained with a Force Balance Model. Thus both models, Energy Balance and Force Balance have to be invoked for the construction of a general model. The effect of dislocations on the coercivity can be treated as short range magnetostrictive effect. The effect of inclusions needs the consideration of the global magnetostatic energy of the system. The dependence of the coercivity with the grain size can also be explained analyzing the magnetostatic energy. The idea of pinning of domain walls by crystalline defects is reformulated, and it is shown that the coercivity increase due to crystalline defects is principally caused by variations of the magnetostatic energy in the system.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

157-162

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Adler and H. Pfeiffer: Trans. Magn. Vol MAG-10 (1974), p.172.

Google Scholar

[2] K.H. Stewart: Ferromagnetic Domains. Edited by Cambridge at University Press. London, (1954).

Google Scholar

[3] S. Chikazumi: Physics of Magnetism. Edited by Robert E. Krieger Pub. Company. Malabar, Florida. Reprint (1984).

Google Scholar

[4] M.F. de Campos: Materials Science Forum Vols. 660-661 (2010), p.284.

Google Scholar

[5] M.F. de Campos: Materials Science Forum Vols. 530-531 (2006), p.146.

Google Scholar

[6] M.F. de Campos, J.C. Teixeira and F.J.G. Landgraf: J. Magn. Magn. Mat. Vol. 301 (2006), p.94.

Google Scholar

[7] A. Mager: Ann. Phys. Lpz. Vol. 11 (1952), p.15.

Google Scholar

[8] M.F. de Campos, M. Emura and F.J.G. Landgraf: J. Magn. Magn. Mat. Vol. 304 (2006), p. e593.

Google Scholar

[9] L.J. Dijkstra and C. Wert: Phys. Rev. Vol. 79 (1950), p.97.

Google Scholar

[10] E.F. Monlevade, M. F. de Campos, F. A. Franco, J. Capo-Sanchez, H. Goldenstein and L.R. Padovese: IEEE Trans. Magn. (2012).

DOI: 10.1109/tmag.2011.2173666

Google Scholar

[11] J.P. Hirth: Metallurgical Transactions A Vol. 16A (1985), p. (2085).

Google Scholar

[12] J.D. Verhoeven: Fundamentals of Physical Metallurgy. Edited by John Willey & Sons. New York, (1975).

Google Scholar

[13] E.C. Stoner and E.P. Wohlfarth: Phil. Trans. Royal Soc. London Vol. A240 (1948), p.599.

Google Scholar

[14] L.J. Swartzendruber, G.E. Hicho, H.D. Chopra, S.D. Leigh, G. Adam and E. Tsory: J. Appl. Phys. Vol. 81 (1997), p.4263.

Google Scholar

[15] C.K. Hou: IEEE Trans. Magnetics Vol. 30 (1994), p.212.

Google Scholar

[16] M.F. de Campos, M.J. Sablik, F.J.G. Landgraf, T.K. Hirsch, R. Machado, R. Magnabosco, C. J. Gutierrez and A. Bandyopadhyay: J. Magn. Magn. Mater. Vol. 320 (2008), p. e377-e380.

DOI: 10.1016/j.jmmm.2008.02.104

Google Scholar

[17] M.C.A. da Silva, M.F. de Campos, F.J.G. Landgraf and I.G.S. Falleiros, unpublished.

Google Scholar

[18] W.H. Hosford. Physical metallurgy. 2nd Edition (CRC Press, Taylor and Francis. 2010).

Google Scholar

[19] K.J. Overshott: IEE Proceedings A, Vol. 138, (1991), p.22.

Google Scholar