Diffusion Coefficients of Interest for the Simulation of Heat Treatment in Rare-Earth Transition Metal Magnets

Article Preview

Abstract:

In the case of the modeling of sintering and heat treatments, the diffusion coefficients are an essential input. However, experimental data in the literature about diffusion coefficients for rare-earth transition metal intermetallics is scarce. In this study, the available data concerning diffusion coefficients relevant for rare-earth transition metal magnets are reviewed and commented. Some empirical rules are discussed, for example the activation energy is affected by the size of the diffusing impurity atom. Diffusion coefficients for Dy, Nd and Fe into Nd2Fe14B are given according an Arrhenius equation D=D0 exp (-Q/RT). For Dy diffusion into Nd2Fe14B, Q 315 kJ/mol and D0 8 . 10-4 m2/s.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

163-168

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.E. Czech: J. Metals Vol 26 (1974), p.2, 32.

Google Scholar

[2] C Herget, H. -G. Domazer: Goldschmidt Informiert Vol. 35 (1975), p.3.

Google Scholar

[3] P.F. Nogueira, F.B. Neto: Materials Science Forum Vols. 299-300 (1999), p.200.

Google Scholar

[4] G. Qi, M. Hino and A. Yazawa: Materials Transactions JIM Vol. 31 (1990), p.463.

Google Scholar

[5] C. Song and O. Ogawa: Shigen to Sozai. Vol. 110 (1994), p.487.

Google Scholar

[6] S. Sugimoto: J. Phys. D: Appl. Phys. Vol. 44 (2011), p.064001.

Google Scholar

[7] H Sepehri-Amin, T Ohkubo and K Hono: Journal of Applied Physics Vol. 107 (2010), p. 09A745.

Google Scholar

[8] G. Yan, P.J. McGuiness, J.P.G. Farr and I.R. Harris: J. Alloys Compd. Vol. 491 (2010), p. L20.

Google Scholar

[9] U.R. Kattner and C.E. Campbell. Materials Science and Technology Vol. 25 (2009), p.443.

Google Scholar

[10] A.D. LeClaire and G. Neumann. in Landolt-Bornstein´s Diffusion in Solid Metals and Alloys, edited by H. Mehrer (Springer, Berlin, 1990), Vol. III/26, p.132.

Google Scholar

[11] H. Mehrer. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes. Springer-Verlag, (Berlin-Heidelberg, 2007).

Google Scholar

[12] G. Neumann and C. Tuijn: Self-Diffusion and Impurity Diffusion in Pure Metals; Handbook of Experimental Data, (Elsevier/Pergamon 2009).

Google Scholar

[13] M. Mantina, Y. Wang, R. Arroyave, L.Q. Chen, Z.K. Liu and C. Wolverton: Phys. Rev. Lett., Vol. 100 (2008), p.215901.

Google Scholar

[14] M. Mantina, Y. Wang, L.Q. Chen, Z.K. Liu, and C. Wolverton: Acta Mater. Vol. 57 (2009), p.4102.

Google Scholar

[15] S. Huang, D. L Worthington, M. Asta, V. Ozolins, G. Ghosh and P. K Liaw: Acta Materialia Vol. 58 (2010), p. (1982).

DOI: 10.1016/j.actamat.2009.11.041

Google Scholar

[16] A.V. Gorshkov: Inorganic Materials Vol. 36 (2000), p.22.

Google Scholar

[17] A.V. Gorshkov: Inorganic Materials Vol., 36 (2000), p.688.

Google Scholar

[18] G.P. Tiwari, J.M. Juneja and Y. Iijima: Journal of Materials Science Vol. 39 (2004), p.1535.

Google Scholar

[19] G.P. Tiwari, R.S. Mehrotra and Y. Iijima in: D. Gupta (editor). Diffusion Processes in Advanced Technological Materials, (William Andrew Publishing, Norwich, NY, Springer-Verlag 2005), p.69.

Google Scholar

[20] J. Pelleg and A. Rabinovitch: J. Phys. F: Met. Phys. Vol. 4 (1974), p. (1924).

Google Scholar

[21] A. Rabinovitch and J. Pelleg: J. Phys. F: Met. Phys. Vol. 7 (1977), p.1853.

Google Scholar

[22] Y. Iijima, K. Kimura and K. Hirano: Acta Metall. Vol. 36 (1988), p.2811.

Google Scholar

[23] C. –G. Lee, Y. Iijima, K. Hirano: Defect and Diffusion Forum Vols. 95–98, (1993), p.723.

Google Scholar

[24] Y. Liu, D. Liang, Y. Du, L. Zhang, D. Yu: CALPHAD Vol. 33 (2009), p.695.

Google Scholar

[25] Y. -W. Cui, M. Jiang, I. Ohnuma, K. Oikawa, R. Kainuma and K. Ishida: Journal of Phase Equilibria and Diffusion Vol. 29 (2008), p.2.

Google Scholar

[26] M. Arita, M. Nakamura, K.S. Goto and Y. Ichinose: Trans. Jap. Inst. Met. Vol. 25 (1984), p.703.

Google Scholar

[27] G. Neumann, V. Tolle and C. Tuijn: Physica B Vol. 304 (2001), p.298.

Google Scholar

[28] H. Siethoff: Intermetallics Vol. 5, (1997), p.625.

Google Scholar

[29] H. Siethoff: Phys. Stat. Sol. (b) Vol. 244 (2007), p.1296.

Google Scholar

[30] C.S. Barret and T.B. Massalski: Structure of Metals, 3rd Edition edited by McGraw-Hill. New York, (1966).

Google Scholar

[31] B.A. Cook, J.L. Harringa, F.C. Laabs, K.W. Dennis, A.M. Russell and R.W. McCallum. Journal of Magnetism and Magnetic Materials Vol. 233 (2001), p. L136.

DOI: 10.1016/s0304-8853(01)00378-x

Google Scholar

[32] M.F. de Campos and J.A. de Castro: Materials Science Forum Vols. 660-661 (2010), p.290.

Google Scholar

[33] M.F. de Campos and J.A. de Castro: in 21th Int. Workshop on Rare-Earth Permanent Magnets. Bled, Slovenia 2010. Procceding.. Slovenia 2010. p.206.

Google Scholar

[34] W. Sprengel, S. Herth, V. Barbe, H.E. Schaefer, T. Wejrzanowski, O. Gutfleisch and R. Wurschum: J. Appl. Phys. Vol. 98 (2005), p.074314.

DOI: 10.1063/1.2084315

Google Scholar

[35] S.B. Rybalka, V.A. Goltsova, V.A. Didusa, D. Fruchart: Journal of Alloys and Compounds Vols. 356–357 (2003), p.390.

Google Scholar

[36] M.P. Dariel: Acta Metall. Vol. 23 (1975), p.473.

Google Scholar

[37] M.P. Dariel, G. Erez and G.M.J. Schmidt: Phil. Mag. Vol. 19 (1969), p.1045.

Google Scholar

[38] M. Fromont and G. Marbach: J. Phys. Chem. Sol. Vol. 38 (1977), p.27.

Google Scholar

[39] M.P. Dariel, D. Dayan and A. Languille: Phys. Rev. B Vol. 4 (1971), p.4348.

Google Scholar

[40] N. Kimura, S. Iwasaki and Y. Nakamura: J. Japan Inst. Metals Vol. 54 (1990) 48.

Google Scholar

[41] C. Song and O. Ogawa: Shigen to Sozai. Vol. 106 (1990), p.761.

Google Scholar

[42] G.V.: Kidson: J. of Nuclear Materials Vol. 3, (1961), p.21.

Google Scholar

[43] M.F. de Campos and F.J. G Landgraf: J. Phase Equilib. Vol. 21 (2000), p.443.

Google Scholar

[44] A.B. Farina and M.F. de Campos: Thermodynamic Modeling of the Binary System Co-Sm. Presented at CALPHAD XL, 2011 May 22th - 27th, Rio de Janeiro, Brazil. Unpublished.

Google Scholar

[45] Y. Yuan, J. Yi, G. Borzone and A. Watson: CALPHAD Vol. 35 (2011), p.416.

Google Scholar

[46] M.F. de Campos and F.J.G. Landgraf, in: 16th International Workshop on Rare-Earth Magnets and their Applications. Sendai, 2000. Proceedings… Japan 2000. p.297.

Google Scholar

[47] F. Gencer, I. R. Harris: Journal of Materials Science Letters Vol. 10 (1991), p.188.

Google Scholar

[48] T. Bailey, I. R. Harris: in Proc. 9th Int. Workshop on Rare Earth Magnets and Their Applications. Bad Soden, 1987. Procciding.. Bad Soden, 1987. p.435.

Google Scholar

[49] C.H. de Groot, K.H.J. Buschow, F.R. de Boer and K. de Kort: J. Appl. Phys. Vol. 83 (1998), p.388.

Google Scholar

[50] S. Derkaoui, N. Valignat and C.G. Allibert: J. Alloys Compd. Vol. 235 (1996), p.112.

Google Scholar

[51] C. Song and O. Ogawa: Shigen to Sozai. Vol. 108 (1992), p.407.

Google Scholar

[52] D. Zhang, I.R. McColl and J.V. Wood:. Philosophical Magazine A Vol. 75 (1997), p.959.

Google Scholar

[53] M.F. de Campos, J.A. de Castro and P.R. Rios: Materials Science Forum Vols. 530-531 (2006), p.152.

Google Scholar

[54] M.F. de Campos, P.R. Rios: J. Alloys Compd. Vol. 377 (2004), p.121.

Google Scholar

[55] M.F. de Campos, P.R. Rios: in Proc. of 18th International Workshop on High Performance Magnets and their Applications. Annecy, France, 2004. Procceding.. France 2004. p.302.

Google Scholar

[56] J.A. de Castro and M.F. de Campos: Mater. Sci. Forum Vols. 591-593 (2008), p.80.

Google Scholar

[57] C. Song and O. Ogawa: Shigen to Sozai Vol. 110 (1994), p.1145.

Google Scholar

[58] J.C. Boareto, J. Soyama, M.D.V. Felisberto, R. Hesse, A.V.A. Pinto, T.R. Taylor and P.A.P. Wendhausen: Materials Science Forum Vols. 534-536 (2007), p.1365.

DOI: 10.4028/www.scientific.net/msf.534-536.1365

Google Scholar

[59] T. Koyama: Sci. Technol. Adv. Mater. Vol. 9 (2008), p.013006.

Google Scholar