Thermal and Dynamic Investigations on Brake Pad Composites Produced with Lignin-Phenol-Formaldehyde Resin

Article Preview

Abstract:

Brake pads are composite materials which have been constantly improved by new materials that increase the quality and reduce the non-renewable raw materials. The goal of this work is to study the behavior of brake pads produced with replacement of phenol-formaldehyde resin by lignin up to 40% weight ratio. The Krauss method of characterization and SEM analysis were employed. The results showed an average friction coefficient approximately to μm=0.4 and a heterogeneous surface morphology. The satisfactory results are compatible with the current friction materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 730-732)

Pages:

390-394

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Maluf, D. Spinelli, M. Angeloni, W. W. Bose, R. Gualberto, Discos de freio automotivos: aspectos históricos e tecnológicos. In: Publicações Institucionais da Universidade Anhanguera, São Paulo, pp.143-153.

Google Scholar

[2] S. Tilden, S. Manor, Method of making and bonding brake friction material to a break shoe, Patent US2646377 (1953).

Google Scholar

[3] M. G. Jacko, R. F. Gager, Lignin modified friction material, Southfield, Patent US4,239,666 (1980).

Google Scholar

[4] G. A. Doering, Lignin modified phenol-formaldehyde resins, US Patent 2,081,495 (1999)

Google Scholar

[5] N. J. Nehez, Lignin-based friction material. WO 97/14747 PCT95/US95/13286 (1997)

Google Scholar

[6] Z. J. Águila. Formulação de compósitos reforçados com fibras de PANOX e polpa de aramida utilizados em materiais de fricção Campinas: Faculdade de Engenharia Química, UNICAMP, 123 p. Mestrado, 1999.

DOI: 10.47749/t/unicamp.2002.265948

Google Scholar

[7] S. J. Kim, H. Jang, Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp, Tribology International, 33 (2000) 477-484.

DOI: 10.1016/s0301-679x(00)00087-6

Google Scholar

[8] A. Tejado, C. Peña, J. Labidi, J. M. Echeverria, I. Mondragon, Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis, Bioresource Technology, 98 (2007) 1655-1663.

DOI: 10.1016/j.biortech.2006.05.042

Google Scholar

[9] M. V. Alonso, M. Oliet, J. M. Pérez, F. Rodríguez, J. Echeverría. Determination of curing kinetic parameters of lignin-phenol-formaldehyde resol resins by several dynamic differential scanning calorimetry methods, Thermochimica Acta. 419 (2004) 161-167.

DOI: 10.1016/j.tca.2004.02.004

Google Scholar

[10] R. Limpert, Brake design and safety, Warrendale: SAE Intl., 2nd Ed, New York, 1999.

Google Scholar

[11] E. Rabinowicz, Friction and wear of materials, John Wiley & Sons, New York, 1965.

Google Scholar

[12] W. D. Callister, Materials Science and Engineering – An introduction, York: John Wiley and Sons Inc., 7th Ed, New York, 2007.

Google Scholar

[13] V. Sarkanen, C. H. Ludwig, Lignin: occurrence, formation, structure and reactions. Wiley Interscience, Canada, 1971.

Google Scholar

[14] ABNT, Associação Brasileira de Normas Técnicas, 1978, NBR MB912: Verificação das características de fricção e desgaste das guarnições de freios a disco - Ensaio Krauss, Rio de Janeiro. 11p.

Google Scholar

[15] A. H. C. Santos, Avaliação do Desempenho de Pastilhas Automobilísticas Nacionais. Campinas: Faculdade de Engenharia Mecânica, UNICAMP. 157 p. (Mestrado), 2005.

DOI: 10.47749/t/unicamp.2005.343805

Google Scholar

[16] I. Mutlu, O. Eldogan, F. Findik, Tribological properties of some phenolic composites suggested for automotive brakes, Tribology International, 39 (2006) 317-325.

DOI: 10.1016/j.triboint.2005.02.002

Google Scholar