[1]
C.A. Santos, J.A. Spim, M.C.F. Ierardi, A. Garcia, The use of artificial intelligence technique for the optimisation of process parameters used in the continuous casting of steel, Appl. Math. Modell. 26 (2002) 1077-1092.
DOI: 10.1016/s0307-904x(02)00062-8
Google Scholar
[2]
C.A. Santos, J.A. Spim, A. Garcia, Modeling of solidification in twin-roll strip casting, J. Mater. Proc. Technol. 102 (2000) 33-39.
DOI: 10.1016/s0924-0136(00)00448-9
Google Scholar
[3]
J. K. Brimacombe, Design of continuous casting machines based on a heat-flow analysis: state-of-the-art review, Can. Metall. Q. 15 (1976) 163-175.
DOI: 10.1179/cmq.1976.15.2.163
Google Scholar
[4]
X.S. Zheng, M.H. Sha, J.Z. Jin, Experimental research and numerical simulation of mold temperature field in continuous casting of steel, Acta Metall. Sin. 19 (2006) 176-182.
DOI: 10.1016/s1006-7191(06)60041-0
Google Scholar
[5]
S. Chaudhuri, R. K. Singh, K. Patwari, S. Majumdar, A. K. Ray, A. K. Prasad Singh, N. Neogi, Design and implementation of an automated secondary cooling system for the continuous casting of billets, ASA Trans. 49 (2010) 121-129.
DOI: 10.1016/j.isatra.2009.09.005
Google Scholar
[6]
J. K. Brimacombe, K. Sorimachi, Crack formation in the continuous casting of steel, Metall. Mater. Trans. B 8 (1977) 489-505.
DOI: 10.1007/bf02696937
Google Scholar
[7]
N. Cheung, A. Garcia, The use of a heuristic search technique for the optimization of quality of steel billets produced by continuous casting, Eng. Appl. Artif. Intel. 14 (2001) 229-238.
DOI: 10.1016/s0952-1976(00)00075-0
Google Scholar
[8]
Y. Meng, B. G. Thomas, Heat transfer and solidification model of continuous slab casting: Con1d, Metall. Mater. Trans. B, 34 (2003) 685-705.
DOI: 10.1007/s11663-003-0040-y
Google Scholar
[9]
A. Ramírez-López, R. Aguilar-López, M. Palomar-Pardavé, M.A. Romero-Romo, D. Muñoz-Negrón, Simulation of heat transfer in steel billets during continuous casting, Int. J. Miner. Metall. Mater. 17 (2010) 403-416.
DOI: 10.1007/s12613-010-0333-5
Google Scholar
[10]
V.K. Barcellos, C.R.F. Ferreira, J.A. Spim, C.A. Santos, A. Garcia, The interrelation between casting size, steel grade, and temperature evolution along the mold length and the strand surface during continuous casting of steel, Mater. Manuf. Proc. 26 (2011) 113-126.
DOI: 10.1080/10426914.2010.502950
Google Scholar
[11]
C.A. Santos, E.L. Fortaleza, C.R.F. Ferreira, J.A. Spim, A. Garcia, A solidification heat transfer model and a neural network based algorithm applied to the continuous casting of steel billets and blooms, Model. Simul. Mater. Sc. 13 (2005) 1071-1087.
DOI: 10.1088/0965-0393/13/7/005
Google Scholar
[12]
F. P. Incropera, D. P. Dewitt, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York,1990.
Google Scholar
[13]
V. R. Voller, C. R. Swaminathan, General Source-Based Method for Solidification Phase Change, Numer. Heat Transfer, Part B 19 (1991) 175-189.
DOI: 10.1080/10407799108944962
Google Scholar
[14]
J. V. Beck, Nonlinear estimation applied to the nonlinear inverse heat conduction problem, Int. J. Heat Mass Tran. 13 (1970) 703-716.
DOI: 10.1016/0017-9310(70)90044-x
Google Scholar
[15]
M. Larreq, J.P. Birat, Optimization of casting and cooling conditions on steel continuous casters. Proceedings of the Third Process Technology Conference, Iron & Steel Society of AIME, Pittsburgh, PA.1, (1982) pp.273-282.
Google Scholar
[16]
B. Lally, L. T. Biegler, H. Henein, H., Optimization and continuous casting: part II. application to industrial casters. Metall. Mater. Trans. B 22 (1991) 649-659.
DOI: 10.1007/bf02679020
Google Scholar