Assessment of Injection Moulded Parts of PP/Nanoclay Produced with Hybrid Moulds

Article Preview

Abstract:

The concept of hybrid mould combines the conventional techniques of mould manufacturing and Rapid Prototyping and Rapid Tooling, resorting to non-conventional materials for producing moulding blocks, e. g., epoxy resin composites. Composites based on an epoxy system with 15% weight fraction of short steel fibres (SSF) were considered adequate for improving the performance of moulding blocks. The epoxy/short steel fibre composite moulding blocks were produced by vacuum casting in silicone moulds. Polypropylene (PP) was mixed with a commercial PP masterbatch with 50% of nanoclay and injected in a hybrid mould under various processing conditions. These were chosen from a central composite design with 15 experiments. The moulding microstructure was assessed by polarized light microscopy and differential scanning calorimetry. The skin-core morphology was observed and suggested that the low thermal conductivity of the epoxy composite produces a thinner skin when compared to all-steel moulds. The nanoclay concentration was the variable with the most significant effect on skin thickness and crystallinity. The addition of 1 wt% nanoclay under certain processing conditions favours the formation of β-form spherulites and the increase of crystallinity.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 730-732)

Pages:

963-968

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q. Yuan, S. Awate and R. D. K. Misra, Nonisothermal crystallization behavior of polypropylene-clay nanocomposites, European Polymer Journal 42 (2006) 1994-2003.

DOI: 10.1016/j.eurpolymj.2006.03.012

Google Scholar

[2] E. M. Araújo, R. Barbosa, A. W. A. B. Rodrigues, T. J. A. Melo and E. N. Ito, Processing and characterization of polyethylene/brazilian clay nanocomposites, Materials Science and Engineering A445-446 (2007) 141-147.

DOI: 10.1016/j.msea.2006.09.012

Google Scholar

[3] J. K. Mishra, J. Ryou, G. Kim, K. Hwang, I. Kim and C. Ha, Preparation and properties of a new thermoplastic vulcanizate (TPV)/organoclay nanocomposite using maleic anhydride functionalized polypropylene as compatibilizer, Materials Letters 58 (2004) 3481-3485.

DOI: 10.1016/j.matlet.2004.07.003

Google Scholar

[4] K. Wang, Y. Xiao, B. Na, H. Tan, Q. Zhang and Q. Fu, Shear amplification and re-crystallization of isotactic polypropylene from an oriented melt in presence of oriented clay platelets, Polymer 46 (2005) 9022-9032.

DOI: 10.1016/j.polymer.2005.07.025

Google Scholar

[5] F. Perrin-Sarazin, M. T. Ton-That, M. N. Bureau and J. Denault, Micro- and nano-structure in polypropylene/clay nanocomposites, Polymer 46 (2005) 11624-11634.

DOI: 10.1016/j.polymer.2005.09.076

Google Scholar

[6] A. Ozdemir, O. Uluer and A. Guldas, Flow front advancement of molten thermoplastic materials during filling stage of a mold cavity, Polymer Testing 23 (2004) 957-966.

DOI: 10.1016/j.polymertesting.2004.04.011

Google Scholar

[7] J. C. Viana, N. Billon and A. M. Cunha, The thermomechanical environment and the mechanical properties of injection moldings Polym. Eng. Sci. 44 (2004) 1522-1533.

DOI: 10.1002/pen.20149

Google Scholar

[8] M. Fujiyama, T. Wakino and Y. Kawasaki, Structure of the skin layer in injection-molded polypropylene, Journal of Applying Polymer Science 35 (1988) 29-49.

DOI: 10.1002/app.1988.070350104

Google Scholar

[9] P. G. Martinho, P. J. Bartolo and A. S. Pouzada, Hybrid moulds: effect of the moulding blocks on the morphology and dimensional properties, Rapid Prototyping Journal 15 (2009) 71 - 82.

DOI: 10.1108/13552540910925081

Google Scholar

[10] P. Lima, J. Ramos and A. S. Pouzada, Thermal performance of hybrid injection molds with epoxy inserts, in: ANTEC 2003, Nashville/USA, 2003.

Google Scholar

[11] D. R. Bareta, R. P. Zeilmann, C. A. Costa and A. S. Pouzada, Application of alternative materials in hybrid mould cores, in: RPD 2006 - Building the future by innovation, Marinha Grande/Portugal, 2006.

Google Scholar

[12] V. M. Saraiva, M. Lima and A. S. Pouzada, Towards a new conceptual design of injection moulds, in: 44th Int Scientific Colloquium, Ilmenau, Germany, 1999.

Google Scholar

[13] A. S. Pouzada, Hybrid moulds: a case of integration of alternative materials and rapid prototyping for tooling, Virtual and Physical Prototyping 4 (2009) 195 - 202

DOI: 10.1080/17452750903438676

Google Scholar

[14] P. Martinho, P. J. Bártolo, M. P. Queirós, A. J. Pontes and A. S. Pouzada, Hybrid Moulds: the Use of Combined Techniques for the Rapid Manufacturing of Injection Moulds, in: P. J. Bártolo (Ed.) Virtual Modelling and Rapid Manufacturing - Advanced Research in Virtual and Rapid Prototyping, Taylor and Francis, London, 2005, p.421.

DOI: 10.1201/9780203859476.ch50

Google Scholar

[15] D. Godec, M. Šercer and M. Rujnic-Sokele, Influence of hybrid mould on moulded parts properties, Rapid Prototyping Journal 14 (2008) 95 - 101.

DOI: 10.1108/13552540810862055

Google Scholar

[16] A. C. Sabino-Netto, Desenvolvimento e avaliação de compósito de resina epóxi reforçado com fibras de aço na fabricação de blocos moldantes para moldagem por injeção, Departamento de Engenharia Mecânica PhD (2008).

DOI: 10.5151/2594-5327-34396

Google Scholar

[17] P. G. Martinho, L. Cardon, T. Neves, P. J. Bartolo and A. S. Pouzada, On the influence of the materials used on the moulding blocks of hybrid moulds, in: PMI 2008 - Int. Conf. on Polymers & Moulds Innovations, Gent/Belgium, 2008.

Google Scholar

[18] A. C. Sabino-Netto, G. V. Salmoria, C. H. Ahrens and A. S. Pouzada, Mechanical Properties of Epoxy Composites Filled with Short Steel Fibres for Hybrid Injection Moulds, Advanced Materials Forum IV 587-588 (2008) 222-226.

DOI: 10.4028/www.scientific.net/msf.587-588.222

Google Scholar

[19] F. J. Medellín-Rodríguez, J. M. M. Padilla, B. S. Hsiao, M. A. Waldo-Mendoza, E. Ramírez-Vargas and S. Sánchez-Valdes, The effect of nanoclays on the nucleation, crystallization, and melting mechanisms of isotatic polypropylene, Pol. Eng. Sci. 47 (2007) 1889-1897.

DOI: 10.1002/pen.20902

Google Scholar

[20] W. Zheng, X. Lu, C. L. Tho, T. H. Zheng and C. He, Effects of clay on polymorphism of polypropylene in polypropylene/clay nanocomposites, J. Pol. Sci: Part B 42 (2004) 1810-1816.

DOI: 10.1002/polb.20043

Google Scholar