A Parameter for Selection of Nano-Dispersoids in Nanofluids for Thermal Applications

Article Preview

Abstract:

A model reported by the present investigators has earlier shown that the extent of heat pick up by a nanoparticle during its collision with the heat source in a given nanofluid would depend on the thermal conductivity (kp, unit W/m.K), density (ρ, unit kg/m3), elastic modulus (E, unit GPa) and Poissons ratio (μ) of the nanoparticle and heat source. Considering the expression for collision period and thermal conductivity of nanoparticle, a factor χ =kp(ρ/E)0.4 is proposed here and examined for the preliminary identification of the potential of a dispersoid in enhancing the thermal conductivity of a nanofluid. The χ-factor for Ag, Cu, CuO, Al2O3 and SiO2 are 2960, 2247, 116, 14.1 and 5.5, respectively. The higher χ-factor of CuO compared to that of Al2O3 can explain why water and ethylene glycol (EG) based CuO-nanofluid is reported to show higher enhancement in the thermal conductivity, when compared to similar Al2O3-nanofluid. The χ for SiO2 is much smaller than that for Ag, which also corroborates well with the marginal enhancement in thermal conductivity of water based nanofluid containing SiO2 nanoparticles. Therefore, a high value of χ of the nanodispersoid can serve as a parameter for the design of nanofluids for heat transfer applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

223-228

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett. 78 (2001) 718-720.

DOI: 10.1063/1.1341218

Google Scholar

[2] S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood and E. A. Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett. 79 (2001) 2252-2254.

DOI: 10.1063/1.1408272

Google Scholar

[3] S. K. Das, N. Putra, P. Thiesen and W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transf. 125 (2003) 567-574.

DOI: 10.1115/1.1571080

Google Scholar

[4] H. E. Patel, S. K. Das, T. Sundararajan, A. S. Nair, B. George and T. Pradeep, Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects, Appl. Phys. Lett. 83 (2003).

DOI: 10.1063/1.1602578

Google Scholar

[5] S. Lee, S. U. S. Choi, S. Li and J. A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transf. 121 (1999) 280-289.

DOI: 10.1115/1.2825978

Google Scholar

[6] R. K. Shukla and V. K. Dhir, Study of the effective thermal conductivity of nanofluids, in: Proceedings of the ASME International Mechanical Engineering Congress and Exposition (Orlando, Florida, USA), November 5-11, 2005, pp.1-5.

Google Scholar

[7] P. Bhattacharya, S. K. Saha, A. Yadav, P. E. Phelan and R. S. Prasher, Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids, J. Appl. Phys. 95 (2004) 6492-6494.

DOI: 10.1063/1.1736319

Google Scholar

[8] S. P. Jang and S. U. S. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett. 84 (2004) 4316-4318.

DOI: 10.1063/1.1756684

Google Scholar

[9] R. Prasher, P. Bhattacharya and P. E. Phelan, Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids, J. Heat Transf. 128 (2006) 588-595.

DOI: 10.1115/1.2188509

Google Scholar

[10] K. C. Leong, C. Yang and S. M. S. Murshed, A model for the thermal conductivity of nanofluids-the effect of interfacial layer, J. Nanopart. Res. 8 (2006) 245-254.

DOI: 10.1007/s11051-005-9018-9

Google Scholar

[11] R. Prasher, W. Evans, P. Meakin, J. Fish, P. Phelan and P. Keblinski, Effect of aggregation on thermal conduction in colloidal nanofluids, Appl. Phys. Lett. 89 (2006) 143119-1-3.

DOI: 10.1063/1.2360229

Google Scholar

[12] J. C. Maxwell, A Treatise on Electricity and Magnetism, 2nd ed., Oxford University Press, Cambridge, 1904, pp.435-441.

Google Scholar

[13] R. L. Hamilton and O. K. Crosser, Thermal conductivity of heterogeneous two-component systems, I& EC Fundamentals 1 (1962) 187-191.

DOI: 10.1021/i160003a005

Google Scholar

[14] M. M. Ghosh, S. Roy, S. K. Pabi and S. Ghosh, A molecular dynamics-stochastic model for thermal conductivity of nanofluids and its experimental validation, J. Nanosci. Nanotechnol. 11 (2011) 2196-2207.

DOI: 10.1166/jnn.2011.3557

Google Scholar

[15] W. John, G. Reischl and W. Devor, Charge transfer to metal surfaces from bouncing aerosol particles, J. Aerosol Sci. 11 (1980) 115-138.

DOI: 10.1016/0021-8502(80)90029-4

Google Scholar

[16] J. Eapen, W. C. Williams, J. Buongiorno, L. W. Hu, S. Yip, R. Rusconi and R. Piazza, Mean-field versus microconvection effects in nanofluid thermal conduction, Phys. Rev. Lett. 99 (2007) 095901-1-4.

DOI: 10.1103/physrevlett.99.095901

Google Scholar