[1]
Annual Book of ASTM Standards, Standard test method for measurement of fracture toughness, E 1820-01, ASTM International, Philadelphia, USA, (2001).
Google Scholar
[2]
Annual Book of ASTM Standards, Standard test method for measurement of fracture toughness, E 399-03, ASTM International, Philadelphia, USA, (2001).
Google Scholar
[3]
Jr. J. C. Newman, A review of chevron notched fracture specimens,. In: Chevron Notched Specimens: Testing and Stress Analysis, ASTM STP 855 (Edited by J. H. Underwood, S.W. Friemann & F. I. Baratta), ASTM, Philadelphia, (1984), 5–31.
DOI: 10.1520/stp32719s
Google Scholar
[4]
L. M. Barker, A simplified method for measuring plane strain fracture toughness, Eng. Fract. Mech., 9, (1977), 361–369.
DOI: 10.1016/0013-7944(77)90028-5
Google Scholar
[5]
L. M. Barker, Theory for determining KIC from small, non-LEFM specimens, supported by experiments on aluminum, International Journal of Fracture, 15(06), (1979), 515-536.
DOI: 10.1007/bf00019921
Google Scholar
[6]
Annual Book of ASTM Standards, Standard test method for plane-strain (chevron-notch) fracture toughness of metallic materials, E1304-89, ASTM, Philadelphia, USA, 03. 01, (1993), 962–972.
DOI: 10.1520/e1304-97
Google Scholar
[7]
K. K. Ray, D. Chakraborty, and S. Ray, Toughness characterization of niobium-bearing HSLA steels, J. Mater. Sci., 29, (1994). 921–928.
DOI: 10.1007/bf00351410
Google Scholar
[8]
K. K. Ray and S. Ray, Accelerated fracture toughness testing for quality control of microalloyed steels, In: Fatigue and Fracture in Steel and Concrete Structure, Oxford and IBH, New Delhi, (1991), 317–332.
Google Scholar
[9]
Wu, S. -X., Fracture toughness determination of bearing steel using chevron-notch three point bend specimen, Eng . Fract. Mech., 19, (1984), 221–232.
DOI: 10.1016/0013-7944(84)90017-1
Google Scholar
[10]
L. M. Barker, F. I. Baratta, Comparison of fracture toughness measurements by short-rod and ASTM standard method of test for plane-strain fracture toughness of metallic materials,. J Test Eval JTEVA, 8(03), (1980), 97–102.
DOI: 10.1520/jte10604j
Google Scholar
[11]
K.K. Ray, and G.P. Poddar, Estimation of fracture toughness of steel using chevron notched round bar specimens, Fatigue Fract Engg Mater Struct, 27, (2003), 253–261.
DOI: 10.1111/j.1460-2695.2004.00753.x
Google Scholar
[12]
Wang, Qizhi, and Xian, Xuefu, A method for calculating stress intensity factors of chevron-notched three-point bend round bars, Int. J. Fract., 45(03), (1990), R37-R41.
DOI: 10.1007/bf00693352
Google Scholar
[13]
K.K. Ray, and D. Chakraborty, A comparative analysis of fracture toughness measurements by chevron notched specimens in three and four point bending, International Journal of Fracture, 57, (1992), R7-R11.
DOI: 10.1007/bf00013012
Google Scholar
[14]
Wu Shang-Xian, Compliance and Stress-Intensity factory of chevron-notched three-point bend specimens, In chevron-notched specimens: Testing and stress analysis, ASTM STP 855, J H Underwood, S W Freimann , And F I Baratta, Eds. American society for testing and materials, Philadelphia, (1984).
DOI: 10.1520/stp32729s
Google Scholar
[15]
O.E.K. Daoud, and D.J. Cartwright, Strain energy release rates for a straight-fronted edge crack in a circular bar subject to bending, Engng. Fract. Mech., 19, (1984), 701-707.
DOI: 10.1016/0013-7944(84)90102-4
Google Scholar
[16]
A. J. Bush, Experimentally determined stress-intensity factor for single-edge-crack round bar loaded in bending, Experimental Mechanics, 16, (1976), 249-257.
DOI: 10.1007/bf02321148
Google Scholar
[17]
J. l. Bluhm, Stability consideration in the generalized three dimensional 'work of fracture' specimen, Fracture, ICF4, University of Waterloo Press, Canada, 3, (1977), 409-417.
DOI: 10.1016/b978-0-08-022142-7.50064-8
Google Scholar
[18]
Shang-Xian, Wu, Stability and optimum geometry of chevron notched three point bend specimens, Int. J. Frac., 26, (1984), R43-R47.
DOI: 10.1007/bf01157552
Google Scholar
[19]
A.M. Calomino, L.J. Ghosn, Optimum notch configurations for the chevron-notched four-point bend specimen, Int. J. Frac., 72, (1995), 331-326.
DOI: 10.1007/bf00040370
Google Scholar
[20]
K. K. Ray, A. Veerababu, and R. Sarkar, Stability analysis and experimental verification for optimum notch configuration in chevron-notched round bar specimens, Fatigue Fract Engng Mater Struct, 27, (2003), 253–261.
DOI: 10.1111/j.1460-2695.2009.01357.x
Google Scholar
[21]
R. Sarkar, and K. K. Ray, Estimation of fracture toughness using miniature chevron-notched specimens, Fatigue Fract Engng Mater Struct, 31, (2008) 340–345.
DOI: 10.1111/j.1460-2695.2008.01237.x
Google Scholar
[22]
J. Toribio, F. J. Ayaso, Anisotropic fracture behaviour of cold drawn steel: a materials science approach, Mater. Sci. Eng., 343A, (2003), 265-272.
DOI: 10.1016/s0921-5093(02)00364-7
Google Scholar
[23]
H.A. Aglan, Z.Y. Liu, M.F. Hassan, M. Fateh, Mechanical and fracture behavior of bainitic rail steel, J. Mater. Proc. Tech., 151, (2004), 268-274.
DOI: 10.1016/j.jmatprotec.2004.04.073
Google Scholar
[24]
A. Bag, K.K. Ray, and E.S. Dawarkadasa, Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels, Metall. And Mater. Trans. A, 30A, (1999), 1193.
DOI: 10.1007/s11661-999-0269-4
Google Scholar
[25]
American Society for Testing of Materials, Standard test methods for tension testing of metallic materials, E8M-00, ASTM International, Philadelphia, USA, (2003).
Google Scholar
[26]
A. Bag, K.K. Ray, and E.S. Dawarkadasa, Influence of martensite content and morphology on toughness and fatigue behavior of high-martensite dual-phase steels, Metall. And Mater. Trans. A, 32A, (2001), 2207.
DOI: 10.1007/s11661-001-0196-5
Google Scholar
[27]
S. Kang, and H. Kwon, Fracture behavior of intercritically treated complex structure in medium-carbon 6Ni steel, Metallurgical and Materials Transaction A, 18A(09), (1987), 1587-1592.
DOI: 10.1007/bf02646142
Google Scholar
[28]
K. Z. Ghar and W.G. Scholz, Fracture toughness of white cast irons, J. Met, 32, No. 10, (1980), 38-45.
Google Scholar
[29]
D. Das, R. Sarkar, A.K. Dutta, and K.K. Ray, Influence of sub-zero treatments on fracture toughness of AISI D2 steel, Materials Science and Engineering A, 528, (2010) , 589–603.
DOI: 10.1016/j.msea.2010.09.057
Google Scholar
[30]
D. Das and K. K. Ray, Structure–property correlation of sub-zero treated AISI D2 steel, Materials Science and Engineering A, 541, (2012), 45–60.
DOI: 10.1016/j.msea.2012.01.130
Google Scholar
[31]
G.T. Hahn, and A. R. Rosenfeild, Metallurgical factors affecting fracture toughness of aluminum alloys, Metallurgical and Materials Transaction A, 6A(03), (1975), 653.
DOI: 10.1007/bf02672285
Google Scholar