p.98
p.120
p.127
p.133
p.147
p.183
p.192
p.207
p.218
Frontiers in Applied Atomic Layer Deposition (ALD) Research
Abstract:
Atomic layer deposition (ALD) has been a key player in advancing the science and technology of nanomaterials synthesis and device fabrication. The monolayer (ML) control of growth rate obtained with ALD combined with its ability to self-limit growth reactions at the gas-substrate interface can be exploited in fundamentally new ways to produce novel composite nanomaterials or precisely tailored 3D nanostructures. Fueling the rapid popularity of ALD in nanotechnology research is the relative simplicity of the hardware and exciting new chemistries that allow researchers to deposit a host of new materials including pure metals, metal oxides, sulphides and nitrides and organic thin films with relative ease and superb accuracy. In this review article, we present four impact areas - microelectronics, energy harvesting and energy storage devices and sensors and photonic devices that have benefitted from such an approach. While many excellent review articles are available on the fundamental chemistry of ALD processes, we focus here on the applied science and engineering aspects of cutting edge ALD research
Info:
Periodical:
Pages:
147-182
Citation:
Online since:
December 2012
Authors:
Keywords:
Price:
Сopyright:
© 2013 Trans Tech Publications Ltd. All Rights Reserved
Citation:
[1] George, S.M., A.W. Ott, and J.W. Klaus, Surface Chemistry for Atomic Layer Growth. J. Phys. Chem., 1996. 100: p.13121.
DOI: 10.1021/jp9536763
[2] Lee, D.J., et al., Structural and Electrical Properties of Atomic Layer Deposited Al-Doped ZnO Films. Advanced Functional Materials, 2011. 21(3): pp.448-455.
[3] Sechrist, Z.A., et al., Optimization and structural characterization of W/Al2O3 nanolaminates grown using atomic layer deposition techniques. Chemistry of Materials, 2005. 17(13): pp.3475-3485.
DOI: 10.1021/cm050470y
[4] Furuya, A., et al., Etch-byproduct pore sealing for atomic-layer-deposited-TaN deposition on porous low-k film. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2005. 44(10): pp.7430-7432.
DOI: 10.1143/jjap.44.7430
[5] Biener, J., et al., Ruthenium/aerogel nanocomposites via atomic layer deposition. Nanotechnology, 2007. 18(5).
[6] Elam, J.W., et al., Atomic layer deposition of W on nanoporous carbon aerogels. Applied Physics Letters, 2006. 89(5).
[7] Elam, J.W., et al., Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition. Chemistry of Materials, 2003. 15(18): pp.3507-3517.
DOI: 10.1021/cm0303080
[8] Perez, I., et al., TEM-based metrology for HfO2 layers and nanotubes formed in anodic aluminum oxide nanopore structures. Small, 2008. 4(8): pp.1223-1232.
[9] King, J.S., et al., Atomic layer deposition in porous structures: 3D photonic crystals. Applied Surface Science, 2005. 244(1-4): pp.511-516.
[10] Leskela, M., et al., Exploitation of atomic layer deposition for nanostructured materials. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2007. 27(5-8): pp.1504-1508.
[11] Knez, M., K. Niesch, and L. Niinisto, Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Advanced Materials, 2007. 19(21): pp.3425-3438.
[12] Gordon, R.G., et al., A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches. Chemical Vapor Deposition, 2003. 9(2): pp.73-78.
[13] Jiang, Y.B., et al., Nanometer-thick conformal pore sealing of self-assembled mesoporous silica by plasma-assisted atomic layer deposition. Journal of the American Chemical Society, 2006. 128(34): pp.11018-11019.
DOI: 10.1021/ja061097d
[14] Liang, X.H., S.M. George, and A.W. Weimer, Synthesis of a novel porous Polymer/Ceramic composite material by low-temperature atomic layer deposition. Chemistry of Materials, 2007. 19: pp.5388-5394.
DOI: 10.1021/cm071431k
[15] Tan, L.K., M.A.S. Chong, and H. Gao, Free-standing porous anodic alumina templates for atomic layer deposition of highly ordered TiO2 nanotube arrays on various substrates. Journal of Physical Chemistry C, 2008. 112: pp.69-73.
DOI: 10.1021/jp076949q
[16] Suntola, T., Atomic layer epitaxy. Thin Solid Films, 1992. 216(1): pp.84-89.
[17] Kessels, W.M.M. and M. Putkonen, Advanced process technologies: Plasma, direct-write, atmospheric pressure, and roll-to-roll ALD. Mrs Bulletin, 2011. 36(11): pp.907-913.
DOI: 10.1557/mrs.2011.239
[18] Kim, S.K., et al., Capacitors with an Equivalent Oxide Thickness of <0. 5 nm for Nanoscale Electronic Semiconductor Memory. Advanced Functional Materials, 2010. 20(18): pp.2989-3003.
[19] Xu, K., et al., Atomic Layer Deposition of Gd2O3 and Dy2O3: A Study of the ALD Characteristics and Structural and Electrical Properties. Chemistry of Materials, 2012. 24(4): pp.651-658.
[20] Kim, H., H. -B. -R. Lee, and W.J. Maeng, Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films, 2009. 517(8): pp.2563-2580.
[21] Xuan, Y., et al. High performance submicron inversion-type enhancement-mode InGaAs MOSFETs with ALD Al<inf>2</inf>O<inf>3</inf>, HfO<inf>2</inf> and HfAlO as gate dielectrics. in Electron Devices Meeting, 2007. IEDM 2007. IEEE International. (2007).
[22] Jevasuwan, W., et al., Initial Processes of Atomic Layer Deposition of Al2O3 on InGaAs: Interface Formation Mechanisms and Impact on Metal-Insulator-Semiconductor Device Performance. Materials, 2012. 5(3): pp.404-414.
DOI: 10.3390/ma5030404
[23] Niinistö, L., et al., Advanced electronic and optoelectronic materials by Atomic Layer Deposition: An overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide materials. physica status solidi (a), 2004. 201(7): pp.1443-1452.
[24] Blomberg, T., et al., ALD grown NbTaOx based MIM capacitors. Microelectronic Engineering, 2011. 88(8): pp.2447-2451.
[25] Kim, H., Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2003. 21(6): pp.2231-2261.
DOI: 10.1116/1.1622676
[26] Kim, S. -H., et al., Characteristics of ALD Tungsten Nitride Using B2H6, WF6, and NH3 and Application to Contact Barrier Layer for DRAM. Journal of the Electrochemical Society, 2007. 154(8): p. D435.
DOI: 10.1149/1.2742913
[27] Kim, S.K., et al., Al-Doped TiO2 Films with Ultralow Leakage Currents for Next Generation DRAM Capacitors. Advanced Materials, 2008. 20(8): pp.1429-1435.
[28] Lu, Y., et al., DNA Functionalization of Carbon Nanotubes for Ultrathin Atomic Layer Deposition of High κ Dielectrics for Nanotube Transistors with 60 mV/Decade Switching. Journal of the American Chemical Society, 2006. 128(11): pp.3518-3519.
DOI: 10.1021/ja058836v
[29] Javey, A., et al., Self-Aligned Ballistic Molecular Transistors and Electrically Parallel Nanotube Arrays. Nano Letters, 2004. 4(7): pp.1319-1322.
DOI: 10.1021/nl049222b
[30] Javey, A., et al., Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-κ Gate Dielectrics. Nano Letters, 2004. 4(3): pp.447-450.
DOI: 10.1021/nl035185x
[31] Ding, L., et al., Carbon nanotube based ultra-low voltage integrated circuits: Scaling down to 0. 4 V. Applied Physics Letters, 2012. 100(26): pp.263116-5.
DOI: 10.1063/1.4731776
[32] Zhang, X. -H., et al., Low-voltage pentacene organic field-effect transistors with high-kappa HfO[sub 2] gate dielectrics and high stability under bias stress. Applied Physics Letters, 2009. 95(22): pp.223302-3.
DOI: 10.1063/1.3269577
[33] Xuan, Y., et al., Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Applied Physics Letters, 2008. 92(1).
[34] Schwierz, F., Graphene transistors. Nat Nano, 2010. 5(7): pp.487-496.
[35] Hwang, W.S., et al., Fabrication of top-gated epitaxial graphene nanoribbon FETs using hydrogen-silsesquioxane. Journal of Vacuum Science & Technology B, 2012. 30(3).
[36] Hollander, M.J., et al., Enhanced Transport and Transistor Performance with Oxide Seeded High-κ Gate Dielectrics on Wafer-Scale Epitaxial Graphene. Nano Letters, 2011. 11(9): pp.3601-3607.
DOI: 10.1021/nl201358y
[37] Liao, L. and X.F. Duan, Graphene-dielectric integration for graphene transistors. Materials Science & Engineering R-Reports, 2010. 70(3-6): pp.354-370.
[38] Wang, L., et al., Ultrathin Oxide Films by Atomic Layer Deposition on Graphene. Nano Letters, 2012. 12(7): pp.3706-3710.
[39] Trung, T.Q., et al., High Thermal Responsiveness of a Reduced Graphene Oxide Field-Effect Transistor. Advanced Materials, 2012: p. n/a-n/a.
[40] Zhu, C., et al., Effect of bandgap engineering on the performance and reliability of a high-kbased nanoscale charge trap flash memory. Journal of Physics D: Applied Physics, 2012. 45(6): p.065104.
[41] Maitrejean, S., et al. Demonstration of Phase Change Memories devices using Ge<inf>2</inf>Sb<inf>2</inf>Te<inf>5</inf> films deposited by Atomic Layer Deposition. in Interconnect Technology Conference and 2011 Materials for Advanced Metallization (IITC/MAM), 2011 IEEE International. (2011).
[42] Chen, L., et al., Resistive switching properties of plasma enhanced-ALD La[sub 2]O[sub 3] for novel nonvolatile memory application. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2012. 30(1): p. 01A148-4.
DOI: 10.1116/1.3669516
[43] Lamperti, A., et al., Cubic/Tetragonal Phase Stabilization in High-kappa ZrO2 Thin Films Grown Using O-3-Based Atomic Layer Deposition. Journal of the Electrochemical Society, 2011. 158(10): p. G221-G226.
DOI: 10.1149/1.3625254
[44] Uk Lee, D., et al., Low operation voltage and high thermal stability of a WSi<inf>2</inf> nanocrystal memory device using an Al<inf>2</inf>O<inf>3</inf>/HfO<inf>2</inf>/Al<inf>2</inf>O<inf>3</inf> tunnel layer. Applied Physics Letters, 2012. 100(7): pp.072901-4.
[45] Kim, K. and S.Y. Lee, Innovation in 1T1C FRAM technologies for ultra high reliable mega density FRAM and future high density FRAM. Integrated Ferroelectrics, 2006. 81: pp.77-88.
[46] Chong, Y.T., et al., Superparamagnetic behavior in cobalt iron oxide nanotube arrays by atomic layer deposition. Journal of Applied Physics, 2011. 110(4): p.043930.
DOI: 10.1063/1.3627369
[47] Gupta, R. and B.G. Willis, Nanometer spaced electrodes using selective area atomic layer deposition. Applied Physics Letters, 2007. 90(25): pp.253102-3.
DOI: 10.1063/1.2749429
[48] Lee, S.W., et al., Atomic Layer Deposition of SrTiO3 Thin Films with Highly Enhanced Growth Rate for Ultrahigh Density Capacitors. Chemistry of Materials, 2011. 23(8): pp.2227-2236.
DOI: 10.1021/cm2002572
[49] Black, K., et al., SrHfO3 Films Grown on Si(100) by Plasma-Assisted Atomic Layer Deposition. Chemistry of Materials, 2011. 23(10): pp.2518-2520.
DOI: 10.1021/cm200315u
[50] Popovici, M., et al., Improved EOT and leakage current for metal-insulator-metal capacitor stacks with rutile TiO2. Microelectronic Engineering, 2011. 88(7): pp.1517-1520.
[51] Xiang, S., et al., Atomic Layer Deposition of TiO 2 on Graphene for Supercapacitors. Journal of the Electrochemical Society, 2012. 159(4): pp.364-369369.
[52] Zhang, F., et al., Atomic layer deposition of Pb(Zr, Ti)O-x on 4H-SiC for metal-ferroelectric-insulator-semiconductor diodes. Journal of Applied Physics, 2011. 109(12).
DOI: 10.1063/1.3596574
[53] Nah, J., et al., Role of Confinement on Carrier Transport in Ge–SixGe1–x Core–Shell Nanowires. Nano Letters, 2011. 12(1): pp.108-112.
DOI: 10.1021/nl2030695
[54] Sultan, S.M., et al., Electrical Characteristics of Top-Down ZnO Nanowire Transistors Using Remote Plasma ALD. Electron Device Letters, IEEE, 2012. 33(2): pp.203-205.
[55] Subannajui, K., et al., An advanced fabrication method of highly ordered ZnO nanowire arrays on silicon substrates by atomic layer deposition. Nanotechnology, 2012. 23(23): p.235607.
[56] Cha, H.G., et al., Enhanced photoluminescence of single crystalline ZnO nanotubes in ZnAl2O4 shell. CrystEngComm, 2012. 14(4): pp.1205-1209.
DOI: 10.1039/c2ce06118j
[57] Fang, Q., et al., Nucleation and Growth of Platinum Films on High-k/Metal Gate Materials by Remote Plasma and Thermal ALD. Physics Procedia, 2012. 32(0): pp.551-560.
[58] Preiner, M.J. and N.A. Melosh, Creating large area molecular electronic junctions using atomic layer deposition. Applied Physics Letters, 2008. 92(21): pp.213301-3.
DOI: 10.1063/1.2917870
[59] Likovich, E.M., et al., High-Current-Density Monolayer CdSe/ZnS Quantum Dot Light-Emitting Devices with Oxide Electrodes. Advanced Materials, 2011. 23(39): pp.4521-4525.
[60] Yun, S.J., Y. -W. Ko, and J.W. Lim, Passivation of organic light-emitting diodes with aluminum oxide thin films grown by plasma-enhanced atomic layer deposition. Applied Physics Letters, 2004. 85(21): p.4896.
DOI: 10.1063/1.1826238
[61] Meyer, J., et al., Reliable thin film encapsulation for organic light emitting diodes grown by low-temperature atomic layer deposition. Applied Physics Letters, 2009. 94(23): p.233305.
DOI: 10.1063/1.3153123
[62] Dasgupta, N.P., et al., Atomic Layer Deposition of Al-doped ZnO Films: Effect of Grain Orientation on Conductivity. Chemistry of Materials, 2010. 22(16): pp.4769-4775.
DOI: 10.1021/cm101227h
[63] Park, S. -H.K., et al., Characteristics of Organic Light Emitting Diodes with Al-Doped ZnO Anode Deposited by Atomic Layer Deposition. Japanese Journal of Applied Physics, 2005. 44(No. 7): p. L242-L245.
DOI: 10.1143/jjap.44.l242
[64] Wu, M.K., et al., ZnO quantum dots embedded in a SiO2nanoparticle layer grown by atomic layer deposition. physica status solidi (RRL) - Rapid Research Letters, 2009. 3(2-3): pp.88-90.
[65] Shih, Y.T., et al., Amplified spontaneous emission from ZnO in n-ZnO/ZnO nanodots–SiO2composite/p-AlGaN heterojunction light-emitting diodes. Nanotechnology, 2009. 20(16): p.165201.
[66] Meyer, J., et al., Indium-free transparent organic light emitting diodes with Al doped ZnO electrodes grown by atomic layer and pulsed laser deposition. Applied Physics Letters, 2008. 93(7): p.073308.
DOI: 10.1063/1.2975176
[67] Kong, B.H., et al., InGaN/GaN blue light emitting diodes using Al-doped ZnO grown by atomic layer deposition as a current spreading layer. Journal of Crystal Growth, 2011. 326(1): pp.147-151.
[68] Luka, G., et al., ZnO films grown by atomic layer deposition for organic electronics. Semiconductor Science and Technology, 2012. 27(7): p.074006.
[69] Li, Z. -Y., et al., High quality ultraviolet AlGaN∕GaN multiple quantum wells with atomic layer deposition grown AlGaN barriers. Applied Physics Letters, 2008. 93(13): p.131116.
DOI: 10.1063/1.2996566
[70] Chen, M. -J., J. -R. Yang, and M. Shiojiri, ZnO-based ultra-violet light emitting diodes and nanostructures fabricated by atomic layer deposition. Semiconductor Science and Technology, 2012. 27(7): p.074005.
[71] Oh, J.R., et al., Wafer-scale colloidal lithography based on self-assembly of polystyrene nanospheres and atomic layer deposition. Journal of Materials Chemistry, 2010. 20(24): p.5025.
DOI: 10.1039/b927532k
[72] Aberle, A.G., Surface Passivation of crystalline silicon solar cells. Progress in Photovoltaics: Research and Applications, 2000. 8: p.15.
[73] Hoex, B., et al., Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al[sub 2]O[sub 3]. Applied Physics Letters, 2006. 89(4): p.042112.
DOI: 10.1063/1.2240736
[74] Blakers, A.W., et al., 22. 8% efficient silicon solar cell. Applied Physics Letters, 1989. 55(13): p.1363.
[75] Pierre Saint-Cast, J.B., Daniel Kania, Lucas Weiss, Marc Hofmann, Jochen Rentsch, Ralf Preu, Stefan W. Glunz, High-Efficiency c-Si Solar Cells Passivated With ALD and PECVD Aluminum Oxide. IEEE ELECTRON DEVICE LETTERS, 2010. 31(7): p.3.
[76] Benick, J., et al., High efficiency n-type Si solar cells on Al 2O3-passivated boron emitters. Applied Physics Letters, 2008. 92(25): p.253504.
DOI: 10.1063/1.2945287
[77] Chang, Y. -H., et al., Direct probe of heterojunction effects upon photoconductive properties of TiO2nanotubes fabricated by atomic layer deposition. Nanotechnology, 2010. 21(22): p.225602.
[78] Dingemans, G., et al., Controlling the fixed charge and passivation properties of Si(100)/Al2O3 interfaces using ultrathin SiO2 interlayers synthesized by atomic layer deposition. Journal of Applied Physics, 2011. 110(9): p.093715.
DOI: 10.1063/1.3658246
[79] Dingemans, G., et al., Influence of the Oxidant on the Chemical and Field-Effect Passivation of Si by ALD Al[sub 2]O[sub 3]. Electrochemical and Solid-State Letters, 2011. 14(1): p. H1.
DOI: 10.1149/1.3501970
[80] Sang, B.D., K. Yamada, A. Konaga, M., High-Efficiency Amorphous Silicon Solar Cells with ZnO as Front Contact. Japanese Journal of Applied Physics, 1999. 38: p.6.
DOI: 10.1143/jjap.38.4983
[81] Hariskos, D., S. Spiering, and M. Powalla, Buffer layers in Cu(In, Ga)Se2 solar cells and modules. Thin Solid Films, 2005. 480-481: pp.99-109.
[82] Schock, H.W. and R. Noufi, CIGS-based solar cells for the next millennium. Progress in Photovoltaics, 2000. 8(1): pp.151-160.
DOI: 10.1002/(sici)1099-159x(200001/02)8:1<151::aid-pip302>3.0.co;2-q
[83] A. Shimizu, S.C., T. Sugiyama, A. Yamada, M. Konagai, Zinc-based buffer layer in the Cu(InGa)Se2 thin film solar cells. Thin Solid Films. 361-362: p.5.
[84] Romeo, A., et al., Development of thin-film Cu(In, Ga)Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications, 2004. 12(23): pp.93-111.
DOI: 10.1002/pip.527
[85] J. Sterner, J.M., L. Stolt, <StudyonALDIn2S3 Cu(In, Ga)Se2. pdf>. Progress in Photovoltaics: Research and Applications, 2005. 13: p.15.
[86] Spiering, S., et al., Stability behaviour of Cd-free Cu(In, Ga)Se2 solar modules with In2S3 buffer layer prepared by atomic layer deposition. Thin Solid Films, 2005. 480-481: pp.195-198.
[87] Yasutoshi Ohtake, K.K., Mitsuru Ichikawa, Akira Yamada, Makoto Konagai, Polycrystalline Cu(InGa)Se2 Thin-Film Solar Cells with ZnSe Buffer Layers. Japanese Journal of Applied Physics, 1995. 34: p.6.
DOI: 10.1143/jjap.34.5949
[88] Platzer-Björkman, C., et al., Zn(O, S) buffer layers by atomic layer deposition in Cu(In, Ga)Se[sub 2] based thin film solar cells: Band alignment and sulfur gradient. Journal of Applied Physics, 2006. 100(4): p.044506.
DOI: 10.1063/1.2222067
[89] Pettersson, J., C. Platzer-Björkman, and M. Edoff, Temperature-dependent current-voltage and lightsoaking measurements on Cu(In, Ga)Se2solar cells with ALD-Zn1-xMgxO buffer layers. Progress in Photovoltaics: Research and Applications, 2009. 17(7): pp.460-469.
DOI: 10.1002/pip.912
[90] Jiang, C.Y., et al., Low temperature processing solid-state dye sensitized solar cells. Applied Physics Letters, 2012. 100(11): p.113901.
DOI: 10.1063/1.3693399
[91] Ganapathy, V., B. Karunagaran, and S. -W. Rhee, Improved performance of dye-sensitized solar cells with TiO2/alumina core–shell formation using atomic layer deposition. Journal of Power Sources, 2010. 195(15): pp.5138-5143.
[92] Oregan, B. and M. Gratzel, A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal Tio2 Films. Nature, 1991. 353(6346): pp.737-740.
DOI: 10.1038/353737a0
[93] Gary Hodes, D.C., All-Solid-State, Semiconductor-Sensitized Nanoporous Solar Cells. Accounts of Chemical Research, 2012. 45: p.9.
DOI: 10.1021/ar200219h
[94] Park, K., et al., Effect of an Ultrathin TiO2 Layer Coated on Submicrometer-Sized ZnO Nanocrystallite Aggregates by Atomic Layer Deposition on the Performance of Dye-Sensitized Solar Cells. Advanced Materials, 2010. 22(21): pp.2329-2332.
[95] Antila, L.J., et al., ALD Grown Aluminum Oxide Submonolayers in Dye-Sensitized Solar Cells: The Effect on Interfacial Electron Transfer and Performance. The Journal of Physical Chemistry C, 2011. 115(33): pp.16720-16729.
DOI: 10.1021/jp204886n
[96] Lin, C., et al., Enhanced performance of dye-sensitized solar cells by an Al2O3 charge-recombination barrier formed by low-temperature atomic layer deposition. Journal of Materials Chemistry, 2009. 19(19): p.2999.
DOI: 10.1039/b819337a
[97] Tina C. Li, M. r.S.G. e., Francisco Fabregat-Santiago, Juan Bisquert, Paulo R. Bueno, Chaiya Prasittichai, Joseph T. Hupp, Tobin J. Marks, Surface Passivation of Nanoporous TiO2 via Atomic Layer Deposition of ZrO2 for Solid-State Dye-Sensitized Solar Cell Applications. The Journal of Physical Chemistry C, 2009. 113: p.6.
DOI: 10.1021/jp906573w
[98] Kuo, C. -Y. and S. -Y. Lu, Fabrication of a multi-scale nanostructure of TiO2 for application in dye-sensitized solar cells. Nanotechnology, 2008. 19(9): p.095705.
[99] Choi, J. -H., et al., Atomic Layer Deposition of Ta-doped TiO2 Electrodes for Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2011. 158(6): p. B749.
DOI: 10.1149/1.3582765
[100] Chou, T.P., et al., Hierarchically Structured ZnO Film for Dye-Sensitized Solar Cells with Enhanced Energy Conversion Efficiency. Advanced Materials, 2007. 19(18): pp.2588-2592.
[101] Hamann, T.W., et al., Aerogel Templated ZnO Dye-Sensitized Solar Cells. Advanced Materials, 2008. 20(8): pp.1560-1564.
[102] Thomas W. Hamann, A.B.F.M., Jeffrey W. Elam, Michael J. Pellin, Joseph T. Hupp, Atomic Layer Deposition of TiO2 on Aerogel Templates: New Photoanodes for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 2008. 112: p.5.
DOI: 10.1021/jp802216p
[103] Liu, L., et al., TiO2 inverse-opal electrode fabricated by atomic layer deposition for dye-sensitized solar cell applications. Energy & Environmental Science, 2011. 4(1): p.209.
DOI: 10.1039/c0ee00086h
[104] Thomas W. Hamann, O.K.F., and Joseph T. Hupp, Outer-Sphere Redox Couples as Shuttles in Dye-Sensitized Solar Cells. Performance Enhancement Based on Photoelectrode Modification via Atomic Layer Deposition. The Journal of Physical Chemistry C, 2008. 112: p.9.
DOI: 10.1021/jp807395g
[105] Alex B. F. Martinson, J.W.E., Jun Liu, Michael J. Pellin, Tobin J. Marks, and Joseph T. Hupp, Radial Electron Collection in Dye-Sensitized Solar Cells. Nano Letters, 2008. 8: p.5.
DOI: 10.1021/nl8015285
[106] Nicholson, P.G. and F.A. Castro, Organic photovoltaics: principles and techniques for nanometre scale characterization. Nanotechnology, 2010. 21(49): p.492001.
[107] Tang, C.W., 2-Layer Organic Photovoltaic Cell. Applied Physics Letters, 1986. 48(2): pp.183-185.
[108] Peumans, P., S. Uchida, and S.R. Forrest, Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature, 2003. 425(6954): pp.158-162.
DOI: 10.1038/nature01949
[109] Scully, S.R. and M.D. McGehee, Effects of optical interference and energy transfer on exciton diffusion length measurements in organic semiconductors. Journal of Applied Physics, 2006. 100(3).
DOI: 10.1063/1.2226687
[110] Zhou, Y., et al., Inverted organic solar cells with ITO electrodes modified with an ultrathin Al2O3 buffer layer deposited by atomic layer deposition. Journal of Materials Chemistry, 2010. 20(29): p.6189.
DOI: 10.1039/c0jm00662a
[111] Cheun, H., et al., Oriented Growth of Al2O3: ZnO Nanolaminates for Use as Electron-Selective Electrodes in Inverted Polymer Solar Cells. Advanced Functional Materials, 2012. 22(7): pp.1531-1538.
[112] Schmidt, H., et al., Transient characteristics of inverted polymer solar cells using titaniumoxide interlayers. Applied Physics Letters, 2010. 96(24): p.243305.
DOI: 10.1063/1.3455108
[113] Seo, H.O., et al., Ultrathin TiO2Films on ZnO Electron-Collecting Layers of Inverted Organic Solar Cell. The Journal of Physical Chemistry C, 2011. 115(43): pp.21517-21520.
DOI: 10.1021/jp2063589
[114] Lori E. Greene, M.L., Benjamin D. Yuhas, Peidong Yang, ZnO-TiO2 Core−Shell Nanorod/P3HT Solar Cells. The Journal of Physical Chemistry C, 2007. 111: p.6.
DOI: 10.1021/jp077593l
[115] Schmidt, H., et al., Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode. Applied Physics Letters, 2009. 94(24): p.243302.
DOI: 10.1063/1.3154556
[116] Wang, D.H., et al., Enhanced High-Temperature Long-Term Stability of Polymer Solar Cells with a Thermally Stable TiOx Interlayer. Journal of Physical Chemistry C, 2009. 113(39): pp.17268-17273.
DOI: 10.1021/jp9060939
[117] Potscavage, W.J., et al., Encapsulation of pentacene/C[sub 60] organic solar cells with Al[sub 2]O[sub 3] deposited by atomic layer deposition. Applied Physics Letters, 2007. 90(25): p.253511.
DOI: 10.1063/1.2751108
[118] Eg and G. Services, Fuel cell handbook [electronic resource] / EG&G Technical Services, Inc, ed. L. National Energy Technology2004, Morgantown, WV : U.S. Dept. of Energy, Office of Fossil Energy, National Energy Technology Laboratory.
DOI: 10.2172/819701
[119] Stambouli, A.B. and E. Traversa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable and Sustainable Energy Reviews, 2002. 6(5): pp.433-455.
[120] Mölsä, H., L. Niinistö, and M. Utriainen, Growth of yttrium oxide thin films from β-diketonate precursor. Advanced Materials for Optics and Electronics, 1994. 4(6): pp.389-400.
[121] Putkonen, M., et al., Low-Temperature ALE Deposition of Y2O3 Thin Films from β-Diketonate Precursors. Chemical Vapor Deposition, 2001. 7(1): pp.44-50.
[122] Ritala, M. and M. Leskelä, Zirconium dioxide thin films deposited by ALE using zirconium tetrachloride as precursor. Applied Surface Science, 1994. 75(1–4): pp.333-340.
[123] Kukli, K., M. Ritala, and M. Leskelä, Low-Temperature Deposition of Zirconium Oxide–Based Nanocrystalline Films by Alternate Supply of Zr[OC(CH3)3]4 and H2O. Chemical Vapor Deposition, 2000. 6(6): pp.297-302.
DOI: 10.1002/1521-3862(200011)6:6<297::aid-cvde297>3.0.co;2-8
[124] Kukli, K., et al., Atomic layer deposition of zirconium oxide from zirconium tetraiodide, water and hydrogen peroxide. Journal of Crystal Growth, 2001. 231(1–2): pp.262-272.
[125] Cassir, M., et al., Synthesis of ZrO2 thin films by atomic layer deposition: growth kinetics, structural and electrical properties. Applied Surface Science, 2002. 193(1–4): pp.120-128.
[126] Putkonen, M., et al., ZrO2 Thin Films Grown on Silicon Substrates by Atomic Layer Deposition with Cp2Zr(CH3)2 and Water as Precursors. Chemical Vapor Deposition, 2003. 9(4): pp.207-212.
[127] Nam, W.H. and S.W. Rhee, Atomic Layer Deposition of ZrO2 Thin Films Using Dichlorobis[bis-(trimethylsilyl)amido]zirconium and Water. Chemical Vapor Deposition, 2004. 10(4): pp.201-205.
[128] Putkonen, M., et al., Deposition of yttria-stabilized zirconia thin films by atomic layer epitaxy from [small beta]-diketonate and organometallic precursors. Journal of Materials Chemistry, 2002. 12(3): pp.442-448.
DOI: 10.1039/b107799f
[129] Bernay, C., et al., Yttria-doped zirconia thin films deposited by atomic layer deposition ALD: a structural, morphological and electrical characterisation. Journal of Physics and Chemistry of Solids, 2003. 64(9–10): pp.1761-1770.
[130] Shim, J.H., et al., Atomic Layer Deposition of Yttria-Stabilized Zirconia for Solid Oxide Fuel Cells. Chemistry of Materials, 2007. 19(15): pp.3850-3854.
DOI: 10.1021/cm070913t
[131] Brahim, C., et al., Electrical properties of thin yttria-stabilized zirconia overlayers produced by atomic layer deposition for solid oxide fuel cell applications. Applied Surface Science, 2007. 253(8): pp.3962-3968.
[132] Chao, C. -C., et al., Improved Solid Oxide Fuel Cell Performance with Nanostructured Electrolytes. ACS Nano, 2011. 5(7): pp.5692-5696.
DOI: 10.1021/nn201354p
[133] Kwon, C. -W., et al., High-Performance Micro-Solid Oxide Fuel Cells Fabricated on Nanoporous Anodic Aluminum Oxide Templates. Advanced Functional Materials, 2011. 21(6): pp.1154-1159.
[134] Kharton, V.V., F.M.B. Marques, and A. Atkinson, Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics, 2004. 174(1–4): pp.135-149.
[135] Gourba, E., et al., Characterisation of thin films of ceria-based electrolytes for IntermediateTemperature — Solid oxide fuel cells (IT-SOFC). Ionics, 2003. 9(1): pp.15-20.
DOI: 10.1007/bf02376531
[136] Ballée, E., et al., Synthesis of a Thin-Layered Ionic Conductor, CeO2−Y2O3, by Atomic Layer Deposition in View of Solid Oxide Fuel Cell Applications. Chemistry of Materials, 2009. 21(19): pp.4614-4619.
DOI: 10.1021/cm9016968
[137] Fan, Z., et al., Improving solid oxide fuel cells with yttria-doped ceria interlayers by atomic layer deposition. Journal of Materials Chemistry, 2011. 21(29): p.10903.
DOI: 10.1039/c1jm11550b
[138] Ishihara, T., H. Matsuda, and Y. Takita, Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor. Journal of the American Chemical Society, 1994. 116(9): pp.3801-3803.
DOI: 10.1021/ja00088a016
[139] Yan, J.W., et al., High-power SOFC using La0. 9Sr0. 1Ga0. 8Mg0. 2O3-delta/Ce0. 8Sm0. 2O2-delta composite film. Electrochemical and Solid State Letters, 2005. 8(8): p. A389-A391.
[140] Nieminen, M., S. Lehto, and L. Niinisto, Atomic layer epitaxy growth of LaGaO3 thin films. Journal of Materials Chemistry, 2001. 11(12): pp.3148-3153.
DOI: 10.1039/b105978p
[141] Cassir, M., A. Ringuedé, and L. Niinistö, Input of atomic layer deposition for solid oxide fuel cell applications. Journal of Materials Chemistry, 2010. 20(41): p.8987.
DOI: 10.1039/c0jm00590h
[142] Brahim, C., et al., ZrO2–In2O3 thin layers with gradual ionic to electronic composition synthesized by atomic layer deposition for SOFC applications. Journal of Materials Chemistry, 2009. 19(6): p.760.
DOI: 10.1039/b813001a
[143] Shim, J.H., et al., Catalysts with Pt Surface Coating by Atomic Layer Deposition for Solid Oxide Fuel Cells. Journal of The Electrochemical Society, 2010. 157(6): p. B793.
DOI: 10.1149/1.3368787
[144] Litster, S. and G. McLean, PEM fuel cell electrodes. Journal of Power Sources, 2004. 130(1–2): pp.61-76.
[145] Fehribach, J. and R. O'Hayre, Triple Phase Boundaries in Solid-Oxide Cathodes. SIAM Journal on Applied Mathematics, 2009. 70(2): pp.510-530.
DOI: 10.1137/080722667
[146] Aaltonen, T., et al., Atomic Layer Deposition of Platinum Thin Films. Chemistry of Materials, 2003. 15(9): p.1924-(1928).
DOI: 10.1021/cm021333t
[147] Jiang, X., et al., Atomic Layer Deposition (ALD) Co-Deposited Pt−Ru Binary and Pt Skin Catalysts for Concentrated Methanol Oxidation. Chemistry of Materials, 2010. 22(10): pp.3024-3032.
DOI: 10.1021/cm902904u
[148] Hämäläinen, J., et al., Atomic Layer Deposition of Platinum Oxide and Metallic Platinum Thin Films from Pt(acac)2 and Ozone. Chemistry of Materials, 2008. 20(21): pp.6840-6846.
DOI: 10.1021/cm801187t
[149] King, J.S., et al., Ultralow Loading Pt Nanocatalysts Prepared by Atomic Layer Deposition on Carbon Aerogels. Nano letters, 2008. 8(8): pp.2405-2409.
DOI: 10.1021/nl801299z
[150] Jiang, X., et al., Application of Atomic Layer Deposition of Platinum to Solid Oxide Fuel Cells. Chemistry of Materials, 2008. 20(12): pp.3897-3905.
DOI: 10.1021/cm7033189
[151] Jiang, X. and S.F. Bent, Area-Selective Atomic Layer Deposition of Platinum on YSZ Substrates Using Microcontact Printed SAMs. Journal of The Electrochemical Society, 2007. 154(12): p. D648.
DOI: 10.1149/1.2789301
[152] Kotecki, D.E., A review of high dielectric materials for DRAM capacitors. Integrated Ferroelectrics, 1997. 16(1-4): pp.1-19.
[153] Banerjee, P., et al., Nanotubular metal-insulator-metal capacitor arrays for energy storage. Nat Nano, 2009. 4(5): pp.292-296.
[154] Lee, D. -J., et al., Formation of Ru Nanotubes by Atomic Layer Deposition onto an Anodized Aluminum Oxide Template. Electrochemical and Solid-State Letters, 2008. 11(6): p. K61-K63.
DOI: 10.1149/1.2901542
[155] Joo, J. -H., et al., Investigation of Ruthenium Electrodes for (Ba, Sr)TiO3 Thin Films. Japanese Journal of Applied Physics, 1998. 37(Part 1, No. 6A): pp.3396-3401.
[156] Bordjiba, T., M. Mohamedi, and L.H. Dao, New Class of Carbon-Nanotube Aerogel Electrodes for Electrochemical Power Sources. Advanced materials, 2008. 20(4): pp.815-819.
[157] Futaba, D.N., et al., Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater, 2006. 5(12): pp.987-994.
DOI: 10.1038/nmat1782
[158] Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors. Nat Mater, 2008. 7(11): pp.845-854.
[159] McDonough, J.R., et al., Carbon nanofiber supercapacitors with large areal capacitances. Applied Physics Letters, 2009. 95(24): pp.243109-3.
DOI: 10.1063/1.3273864
[160] Sun, X., et al., Atomic Layer Deposition of TiO2 on Graphene for Supercapacitors. Journal of The Electrochemical Society, 2012. 159(4): p. A364.
[161] Sherrill, S.A., et al., MnO2/TiN heterogeneous nanostructure design for electrochemical energy storage. Physical Chemistry Chemical Physics, 2011. 13(33): pp.15221-15226.
DOI: 10.1039/c1cp21815h
[162] Qu, D. and H. Shi, Studies of activated carbons used in double-layer capacitors. Journal of Power Sources, 1998. 74(1): pp.99-107.
[163] Huang, Q., et al., Nickel hydroxide/activated carbon composite electrodes for electrochemical capacitors. Journal of Power Sources, 2007. 164(1): pp.425-429.
[164] Boukhalfa, S., K. Evanoff, and G. Yushin, Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energy & Environmental Science, 2012. 5(5): pp.6872-6879.
DOI: 10.1039/c2ee21110f
[165] Pint, C.L., et al., Three dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array templates. Carbon, 2011. 49(14): pp.4890-4897.
[166] Portet, C., et al., Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications. Electrochimica Acta, 2004. 49(6): pp.905-912.
[167] Benson, J., et al., Chemical Vapor Deposition of Aluminum Nanowires on Metal Substrates for Electrical Energy Storage Applications. ACS Nano, 2012. 6(1): pp.118-125.
DOI: 10.1021/nn202979y
[168] Patil, A., et al., Issue and challenges facing rechargeable thin film lithium batteries. Materials Research Bulletin. 43(8–9): p.1913-(1942).
[169] Bruce, P.G., B. Scrosati, and J. -M. Tarascon, Nanomaterials for Rechargeable Lithium Batteries. Angewandte Chemie International Edition, 2008. 47(16): pp.2930-2946.
[170] Su, L.W., Y. Jing, and Z. Zhou, Li ion battery materials with core-shell nanostructures. Nanoscale, 2011. 3(10): pp.3967-3983.
DOI: 10.1039/c1nr10550g
[171] Donders, M., et al., (Invited) All-Solid-State Batteries: A Challenging Route towards 3D Integration. ECS Transactions, 2010. 33(2): pp.213-222.
DOI: 10.1149/1.3485258
[172] Aaltonen, T., et al., (Invited) ALD of Thin Films for Lithium-Ion Batteries. ECS Transactions, 2011. 41(2): pp.331-339.
DOI: 10.1149/1.3633684
[173] Knoops, H.C.M., et al., Atomic layer deposition for nanostructured Li-ion batteries. Journal of Vacuum Science & Technology A, 2012. 30(1).
[174] Chen, X.Y., et al., Ozone-Based Atomic Layer Deposition of Crystalline V2O5 Films for High Performance Electrochemical Energy Storage. Chemistry of Materials, 2012. 24(7): pp.1255-1261.
DOI: 10.1021/cm202901z
[175] Wang, W., et al., Three-dimensional Ni/TiO2 nanowire network for high areal capacity lithium ion microbattery applications. Nano letters, 2012. 12(2): pp.655-60.
DOI: 10.1021/nl203434g
[176] Panda, S.K., et al., Nanoscale size effect of titania (anatase) nanotubes with uniform wall thickness as high performance anode for lithium-ion secondary battery. Journal of Power Sources, 2012. 204: pp.162-167.
[177] Donders, M.E., et al., Co3O4 as anode material for thin film micro-batteries prepared by remote plasma atomic layer deposition. Journal of Power Sources, 2012. 203(0): pp.72-77.
[178] Li, X., et al., Tin Oxide with Controlled Morphology and Crystallinity by Atomic Layer Deposition onto Graphene Nanosheets for Enhanced Lithium Storage. Advanced Functional Materials, 2012. 22(8): pp.1647-1654.
[179] Riley, L.A., et al., Conformal surface coatings to enable high volume expansion Li-ion anode materials. Chemphyschem : a European journal of chemical physics and physical chemistry, 2010. 11(10): pp.2124-30.
[180] Ahn, D. and X.C. Xiao, Extended lithium titanate cycling potential window with near zero capacity loss. Electrochemistry Communications, 2011. 13(8): pp.796-799.
[181] Dillon, A.C., et al., HWCVD MoO3 nanoparticles and a-Si for next generation Li-ion anodes. Thin Solid Films, 2011. 519(14): pp.4495-4497.
[182] Lahiri, I., et al., Ultrathin alumina-coated carbon nanotubes as an anode for high capacity Li-ion batteries. Journal of Materials Chemistry, 2011. 21(35): pp.13621-13626.
DOI: 10.1039/c1jm11474c
[183] Zhao, J., et al., Low temperature preparation of crystalline ZrO(2) coatings for improved elevated-temperature performances of Li-ion battery cathodes. Chemical communications, 2012. 48(65): pp.8108-10.
DOI: 10.1039/c2cc33522k
[184] Schlapbach, L. and A. Zuttel, Hydrogen-storage materials for mobile applications. Nature, 2001. 414(6861): pp.353-358.
DOI: 10.1038/35104634
[185] Hull, J.F., et al., Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nature chemistry, 2012. 4(5): pp.383-388.
DOI: 10.1038/nchem.1295
[186] Klerke, A., et al., Ammonia for hydrogen storage: challenges and opportunities. Journal of Materials Chemistry, 2008. 18(20): pp.2304-2310.
[187] F. Brown, L., A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles. International Journal of Hydrogen Energy, 2001. 26(4): pp.381-397.
[188] Sakintuna, B., F. Lamari-Darkrim, and M. Hirscher, Metal hydride materials for solid hydrogen storage: A review. International Journal of Hydrogen Energy, 2007. 32(9): pp.1121-1140.
[189] Muir, S.S. and X. Yao, Progress in sodium borohydride as a hydrogen storage material: Development of hydrolysis catalysts and reaction systems. International Journal of Hydrogen Energy, 2011. 36(10): pp.5983-5997.
[190] Demirci, U.B., et al., Sodium Borohydride Hydrolysis as Hydrogen Generator: Issues, State of the Art and Applicability Upstream from a Fuel Cell. Fuel Cells, 2010. 10(3): pp.335-350.
[191] Hynek, S., W. Fuller, and J. Bentley, Hydrogen storage by carbon sorption. International Journal of Hydrogen Energy, 1997. 22(6): pp.601-610.
[192] Fazle Kibria, A.K.M., et al., Electrochemical hydrogen storage behaviors of CVD, AD and LA grown carbon nanotubes in KOH medium. International Journal of Hydrogen Energy, 2001. 26(8): pp.823-829.
[193] Mosaner, P., et al., Mg: Nb films produced by pulsed laser deposition for hydrogen storage. Materials Science and Engineering: B, 2004. 108(1-2): pp.33-37.
[194] Hanlon, J.M., et al., The Challenge of Storage in the Hydrogen Energy Cycle: Nanostructured Hydrides as a Potential Solution. Australian Journal of Chemistry, 2012(65): pp.656-671.
DOI: 10.1071/ch11437
[195] Kabbour, H., et al., Toward New Candidates for Hydrogen Storage: High-Surface-Area Carbon Aerogels. Chemistry of Materials, 2006. 18(26): pp.6085-6087.
DOI: 10.1021/cm062329a
[196] Suh, M.P., et al., Hydrogen storage in metal-organic frameworks. Chemical reviews, 2012. 112(2): pp.782-835.
[197] Norek, M., et al., A comparative study on the hydrogen absorption of thin films at room temperature deposited on non-porous glass substrate and nano-porous anodic aluminum oxide (AAO) template. International Journal of Hydrogen Energy, 2011. 36(18): pp.11777-11784.
[198] Gautam, Y.K., et al., Hydrogen absorption and optical properties of Pd/Mg thin films prepared by DC magnetron sputtering. International Journal of Hydrogen Energy, 2012. 37(4): pp.3772-3778.
[199] Adams, B.D., C.K. Ostrom, and A. Chen, Hydrogen electrosorption into Pd-Cd nanostructures. Langmuir : the ACS journal of surfaces and colloids, 2010. 26(10): pp.7632-7.
DOI: 10.1021/la9044072
[200] Rogers, M., et al., Hydrogen storage characteristics of nanograined free-standing magnesium–nickel films. Applied Physics A, 2009. 96(2): pp.349-352.
[201] Qu, J., et al., Improved hydrogen storage properties in Mg-based thin films by tailoring structures. International Journal of Hydrogen Energy, 2010. 35(15): pp.8331-8336.
[202] Singh, S., et al., Nanoscale structure and the hydrogenation of Pd-capped magnesium thin films prepared by plasma sputter and pulsed laser deposition. Journal of Alloys and Compounds, 2007. 441(1-2): pp.344-351.
[203] Bouhtiyya, S. and L. Roué, Pd/Mg/Pd thin films prepared by pulsed laser deposition under different helium pressures: Structure and electrochemical hydriding properties. International Journal of Hydrogen Energy, 2009. 34(14): pp.5778-5784.
[204] Bouhtiyya, S. and L. Roué, Structure and electrochemical hydrogen storage properties of Pd/Mg1−x Al x /Pd thin films prepared by pulsed laser deposition. Journal of Materials Science, 2009. 45(4): pp.946-952.
[205] Ten Eyck, G.A., et al., Atomic layer deposition of Pd on an oxidized metal substrate. Chemical Vapor Deposition, 2006. 12(5): pp.290-294.
[206] Ten Eyck, G.A., et al., Plasma-Enhanced Atomic Layer Deposition of Palladium on a Polymer Substrate. Chemical Vapor Deposition, 2007. 13(6-7): pp.307-311.
[207] Kishore, S., et al., Hydrogen storage in spherical and platelet palladium nanoparticles. Journal of Alloys and Compounds, 2005. 389(1–2): pp.234-242.
[208] Takagi, H., H. Hatori, and Y. Yamada, Reversible adsorption/desorption property of hydrogen on carbon surface. Carbon, 2005. 43(14): pp.3037-3039.
[209] Akimov, Y.K., Fields of Application of Aerogels (Review). Instruments and Experimental Techniques, 2003. 46(3): pp.287-299.
[210] Kalidindi, S.B. and B.R. Jagirdar, Nanocatalysis and prospects of green chemistry. ChemSusChem, 2012. 5(1): pp.65-75.
[211] Baumann, T.F., et al., Atomic Layer Deposition of Uniform Metal Coatings on Highly Porous Aerogel Substrates. Chemistry of Materials, 2006. 18(26): pp.6106-6108.
DOI: 10.1021/cm061752g
[212] Juergen, B., et al., Ruthenium/aerogel nanocomposites via atomic layer deposition. Nanotechnology, 2007. 18(5): p.055303.
[213] Hoivik, N.D., et al., Atomic layer deposited protective coatings for micro-electromechanical systems. Sensors and Actuators a-Physical, 2003. 103(1-2): pp.100-108.
[214] Tripp, M.K., et al., The mechanical properties of atomic layer deposited alumina for use in micro- and nano-electromechanical systems. Sensors and Actuators a-Physical, 2006. 130: pp.419-429.
[215] Mohseni, H. and T.W. Scharf, Atomic layer deposition of ZnO/Al2O3/ZrO2 nanolaminates for improved thermal and wear resistance in carbon-carbon composites. Journal of Vacuum Science & Technology A, 2012. 30(1).
DOI: 10.1116/1.3669518
[216] Scharf, T.W., et al., Atomic layer deposition of tungsten disulphide solid lubricant thin films. Journal of Materials Research, 2004. 19(12): pp.3443-3446.
[217] Lu, J.L., et al., Porous Alumina Protective Coatings on Palladium Nanoparticles by Self-Poisoned Atomic Layer Deposition. Chemistry of Materials, 2012. 24(11): p.2047-(2055).
DOI: 10.1021/cm300203s
[218] Feng, H., et al., Alumina Over-coating on Pd Nanoparticle Catalysts by Atomic Layer Deposition: Enhanced Stability and Reactivity. Catalysis Letters, 2011. 141(4): pp.512-517.
[219] Cimatu, K.A., et al., Nanoscale Chemical Imaging of Zinc Oxide Nanowire Corrosion. Journal of Physical Chemistry C, 2012. 116(18): pp.10405-10414.
DOI: 10.1021/jp301922a
[220] Paussa, L., et al., Protection of silver surfaces against tarnishing by means of alumina/titania-nanolayers. Surface & Coatings Technology, 2011. 206(5): pp.976-980.
[221] Biener, M.M., et al., ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity. Nano Letters, 2011. 11(8): pp.3085-3090.
DOI: 10.1021/nl200993g
[222] Jur, J.S., et al., Atomic Layer Deposition of Conductive Coatings on Cotton, Paper, and Synthetic Fibers: Conductivity Analysis and Functional Chemical Sensing Using All-Fiber, Capacitors. Advanced Functional Materials, 2011. 21(11): p.1993-(2002).
[223] Rosenthal, A., et al., Gas sensing properties of epitaxial SnO2 thin films prepared by atomic layer deposition. Sensors and Actuators B-Chemical, 2003. 93(1-3): pp.552-555.
[224] Cianci, E., et al., Atomic layer deposited TiO2 for implantable brain-chip interfacing devices. Thin Solid Films, 2012. 520(14): pp.4745-4748.
[225] Lin, Y.H., et al., Fabrication of tin dioxide nanowires with ultrahigh gas sensitivity by atomic layer deposition of platinum. Journal of Materials Chemistry, 2011. 21(28): pp.10552-10558.
DOI: 10.1039/c1jm10785b
[226] Korhonen, J.T., et al., Hydrophobic Nanocellulose Aerogels as Floating, Sustainable, Reusable, and Recyclable Oil Absorbents. Acs Applied Materials & Interfaces, 2011. 3(6): pp.1813-1816.
DOI: 10.1021/am200475b
[227] Sechrist, Z.A., et al., Modification of opal photonic crystals using Al2O3 atomic layer deposition. Chemistry of Materials, 2006. 18(15): pp.3562-3570.
DOI: 10.1021/cm060263d
[228] Marichy, C., et al., Tin Dioxide Sensing Layer Grown on Tubular Nanostructures by a Non-Aqueous Atomic Layer Deposition Process. Advanced Functional Materials, 2011. 21(4): pp.658-666.
[229] Korhonen, J.T., et al., Inorganic Hollow Nanotube Aerogels by Atomic Layer Deposition onto Native Nanocellulose Templates. Acs Nano, 2011. 5(3): p.1967-(1974).
DOI: 10.1021/nn200108s
[230] Braun, P.V., S.A. Rinne, and F. Garcia-Santamaria, Introducing defects in 3D photonic crystals: State of the art. Advanced Materials, 2006. 18(20): pp.2665-2678.
[231] Rugge, A., et al., Tungsten nitride inverse opals by atomic layer deposition. Nano Letters, 2003. 3(9): pp.1293-1297.
DOI: 10.1021/nl034362r
[232] Liu, L.J., et al., Electrochromic photonic crystal displays with versatile color tunability. Electrochemistry Communications, 2011. 13(11): pp.1163-1165.
[233] Arpin, K.A., M.D. Losego, and P.V. Braun, Electrodeposited 3D Tungsten Photonic Crystals with Enhanced Thermal Stability. Chemistry of Materials, 2011. 23(21): pp.4783-4788.
DOI: 10.1021/cm2019789
[234] Kolle, M., et al., Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nature Nanotechnology, 2010. 5(7): pp.511-515.