Frontiers in Applied Atomic Layer Deposition (ALD) Research

Article Preview

Abstract:

Atomic layer deposition (ALD) has been a key player in advancing the science and technology of nanomaterials synthesis and device fabrication. The monolayer (ML) control of growth rate obtained with ALD combined with its ability to self-limit growth reactions at the gas-substrate interface can be exploited in fundamentally new ways to produce novel composite nanomaterials or precisely tailored 3D nanostructures. Fueling the rapid popularity of ALD in nanotechnology research is the relative simplicity of the hardware and exciting new chemistries that allow researchers to deposit a host of new materials including pure metals, metal oxides, sulphides and nitrides and organic thin films with relative ease and superb accuracy. In this review article, we present four impact areas - microelectronics, energy harvesting and energy storage devices and sensors and photonic devices that have benefitted from such an approach. While many excellent review articles are available on the fundamental chemistry of ALD processes, we focus here on the applied science and engineering aspects of cutting edge ALD research

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-182

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] George, S.M., A.W. Ott, and J.W. Klaus, Surface Chemistry for Atomic Layer Growth. J. Phys. Chem., 1996. 100: p.13121.

DOI: 10.1021/jp9536763

Google Scholar

[2] Lee, D.J., et al., Structural and Electrical Properties of Atomic Layer Deposited Al-Doped ZnO Films. Advanced Functional Materials, 2011. 21(3): pp.448-455.

DOI: 10.1002/adfm.201001342

Google Scholar

[3] Sechrist, Z.A., et al., Optimization and structural characterization of W/Al2O3 nanolaminates grown using atomic layer deposition techniques. Chemistry of Materials, 2005. 17(13): pp.3475-3485.

DOI: 10.1021/cm050470y

Google Scholar

[4] Furuya, A., et al., Etch-byproduct pore sealing for atomic-layer-deposited-TaN deposition on porous low-k film. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2005. 44(10): pp.7430-7432.

DOI: 10.1143/jjap.44.7430

Google Scholar

[5] Biener, J., et al., Ruthenium/aerogel nanocomposites via atomic layer deposition. Nanotechnology, 2007. 18(5).

Google Scholar

[6] Elam, J.W., et al., Atomic layer deposition of W on nanoporous carbon aerogels. Applied Physics Letters, 2006. 89(5).

Google Scholar

[7] Elam, J.W., et al., Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition. Chemistry of Materials, 2003. 15(18): pp.3507-3517.

DOI: 10.1021/cm0303080

Google Scholar

[8] Perez, I., et al., TEM-based metrology for HfO2 layers and nanotubes formed in anodic aluminum oxide nanopore structures. Small, 2008. 4(8): pp.1223-1232.

DOI: 10.1002/smll.200700815

Google Scholar

[9] King, J.S., et al., Atomic layer deposition in porous structures: 3D photonic crystals. Applied Surface Science, 2005. 244(1-4): pp.511-516.

DOI: 10.1016/j.apsusc.2004.10.110

Google Scholar

[10] Leskela, M., et al., Exploitation of atomic layer deposition for nanostructured materials. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2007. 27(5-8): pp.1504-1508.

Google Scholar

[11] Knez, M., K. Niesch, and L. Niinisto, Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Advanced Materials, 2007. 19(21): pp.3425-3438.

DOI: 10.1002/adma.200700079

Google Scholar

[12] Gordon, R.G., et al., A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches. Chemical Vapor Deposition, 2003. 9(2): pp.73-78.

DOI: 10.1002/cvde.200390005

Google Scholar

[13] Jiang, Y.B., et al., Nanometer-thick conformal pore sealing of self-assembled mesoporous silica by plasma-assisted atomic layer deposition. Journal of the American Chemical Society, 2006. 128(34): pp.11018-11019.

DOI: 10.1021/ja061097d

Google Scholar

[14] Liang, X.H., S.M. George, and A.W. Weimer, Synthesis of a novel porous Polymer/Ceramic composite material by low-temperature atomic layer deposition. Chemistry of Materials, 2007. 19: pp.5388-5394.

DOI: 10.1021/cm071431k

Google Scholar

[15] Tan, L.K., M.A.S. Chong, and H. Gao, Free-standing porous anodic alumina templates for atomic layer deposition of highly ordered TiO2 nanotube arrays on various substrates. Journal of Physical Chemistry C, 2008. 112: pp.69-73.

DOI: 10.1021/jp076949q

Google Scholar

[16] Suntola, T., Atomic layer epitaxy. Thin Solid Films, 1992. 216(1): pp.84-89.

DOI: 10.1016/0040-6090(92)90874-b

Google Scholar

[17] Kessels, W.M.M. and M. Putkonen, Advanced process technologies: Plasma, direct-write, atmospheric pressure, and roll-to-roll ALD. Mrs Bulletin, 2011. 36(11): pp.907-913.

DOI: 10.1557/mrs.2011.239

Google Scholar

[18] Kim, S.K., et al., Capacitors with an Equivalent Oxide Thickness of <0. 5 nm for Nanoscale Electronic Semiconductor Memory. Advanced Functional Materials, 2010. 20(18): pp.2989-3003.

DOI: 10.1002/adfm.201000599

Google Scholar

[19] Xu, K., et al., Atomic Layer Deposition of Gd2O3 and Dy2O3: A Study of the ALD Characteristics and Structural and Electrical Properties. Chemistry of Materials, 2012. 24(4): pp.651-658.

Google Scholar

[20] Kim, H., H. -B. -R. Lee, and W.J. Maeng, Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films, 2009. 517(8): pp.2563-2580.

DOI: 10.1016/j.tsf.2008.09.007

Google Scholar

[21] Xuan, Y., et al. High performance submicron inversion-type enhancement-mode InGaAs MOSFETs with ALD Al<inf>2</inf>O<inf>3</inf>, HfO<inf>2</inf> and HfAlO as gate dielectrics. in Electron Devices Meeting, 2007. IEDM 2007. IEEE International. (2007).

DOI: 10.1109/iedm.2007.4419020

Google Scholar

[22] Jevasuwan, W., et al., Initial Processes of Atomic Layer Deposition of Al2O3 on InGaAs: Interface Formation Mechanisms and Impact on Metal-Insulator-Semiconductor Device Performance. Materials, 2012. 5(3): pp.404-414.

DOI: 10.3390/ma5030404

Google Scholar

[23] Niinistö, L., et al., Advanced electronic and optoelectronic materials by Atomic Layer Deposition: An overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide materials. physica status solidi (a), 2004. 201(7): pp.1443-1452.

DOI: 10.1002/pssa.200406798

Google Scholar

[24] Blomberg, T., et al., ALD grown NbTaOx based MIM capacitors. Microelectronic Engineering, 2011. 88(8): pp.2447-2451.

DOI: 10.1016/j.mee.2011.01.050

Google Scholar

[25] Kim, H., Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2003. 21(6): pp.2231-2261.

DOI: 10.1116/1.1622676

Google Scholar

[26] Kim, S. -H., et al., Characteristics of ALD Tungsten Nitride Using B2H6, WF6, and NH3 and Application to Contact Barrier Layer for DRAM. Journal of the Electrochemical Society, 2007. 154(8): p. D435.

DOI: 10.1149/1.2742913

Google Scholar

[27] Kim, S.K., et al., Al-Doped TiO2 Films with Ultralow Leakage Currents for Next Generation DRAM Capacitors. Advanced Materials, 2008. 20(8): pp.1429-1435.

DOI: 10.1002/adma.200701085

Google Scholar

[28] Lu, Y., et al., DNA Functionalization of Carbon Nanotubes for Ultrathin Atomic Layer Deposition of High κ Dielectrics for Nanotube Transistors with 60 mV/Decade Switching. Journal of the American Chemical Society, 2006. 128(11): pp.3518-3519.

DOI: 10.1021/ja058836v

Google Scholar

[29] Javey, A., et al., Self-Aligned Ballistic Molecular Transistors and Electrically Parallel Nanotube Arrays. Nano Letters, 2004. 4(7): pp.1319-1322.

DOI: 10.1021/nl049222b

Google Scholar

[30] Javey, A., et al., Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-κ Gate Dielectrics. Nano Letters, 2004. 4(3): pp.447-450.

DOI: 10.1021/nl035185x

Google Scholar

[31] Ding, L., et al., Carbon nanotube based ultra-low voltage integrated circuits: Scaling down to 0. 4&#x2009;V. Applied Physics Letters, 2012. 100(26): pp.263116-5.

DOI: 10.1063/1.4731776

Google Scholar

[32] Zhang, X. -H., et al., Low-voltage pentacene organic field-effect transistors with high-kappa HfO[sub 2] gate dielectrics and high stability under bias stress. Applied Physics Letters, 2009. 95(22): pp.223302-3.

DOI: 10.1063/1.3269577

Google Scholar

[33] Xuan, Y., et al., Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Applied Physics Letters, 2008. 92(1).

Google Scholar

[34] Schwierz, F., Graphene transistors. Nat Nano, 2010. 5(7): pp.487-496.

Google Scholar

[35] Hwang, W.S., et al., Fabrication of top-gated epitaxial graphene nanoribbon FETs using hydrogen-silsesquioxane. Journal of Vacuum Science & Technology B, 2012. 30(3).

Google Scholar

[36] Hollander, M.J., et al., Enhanced Transport and Transistor Performance with Oxide Seeded High-κ Gate Dielectrics on Wafer-Scale Epitaxial Graphene. Nano Letters, 2011. 11(9): pp.3601-3607.

DOI: 10.1021/nl201358y

Google Scholar

[37] Liao, L. and X.F. Duan, Graphene-dielectric integration for graphene transistors. Materials Science & Engineering R-Reports, 2010. 70(3-6): pp.354-370.

DOI: 10.1016/j.mser.2010.07.003

Google Scholar

[38] Wang, L., et al., Ultrathin Oxide Films by Atomic Layer Deposition on Graphene. Nano Letters, 2012. 12(7): pp.3706-3710.

Google Scholar

[39] Trung, T.Q., et al., High Thermal Responsiveness of a Reduced Graphene Oxide Field-Effect Transistor. Advanced Materials, 2012: p. n/a-n/a.

Google Scholar

[40] Zhu, C., et al., Effect of bandgap engineering on the performance and reliability of a high-kbased nanoscale charge trap flash memory. Journal of Physics D: Applied Physics, 2012. 45(6): p.065104.

DOI: 10.1088/0022-3727/45/6/065104

Google Scholar

[41] Maitrejean, S., et al. Demonstration of Phase Change Memories devices using Ge<inf>2</inf>Sb<inf>2</inf>Te<inf>5</inf> films deposited by Atomic Layer Deposition. in Interconnect Technology Conference and 2011 Materials for Advanced Metallization (IITC/MAM), 2011 IEEE International. (2011).

DOI: 10.1109/iitc.2011.5940298

Google Scholar

[42] Chen, L., et al., Resistive switching properties of plasma enhanced-ALD La[sub 2]O[sub 3] for novel nonvolatile memory application. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2012. 30(1): p. 01A148-4.

DOI: 10.1116/1.3669516

Google Scholar

[43] Lamperti, A., et al., Cubic/Tetragonal Phase Stabilization in High-kappa ZrO2 Thin Films Grown Using O-3-Based Atomic Layer Deposition. Journal of the Electrochemical Society, 2011. 158(10): p. G221-G226.

DOI: 10.1149/1.3625254

Google Scholar

[44] Uk Lee, D., et al., Low operation voltage and high thermal stability of a WSi<inf>2</inf> nanocrystal memory device using an Al<inf>2</inf>O<inf>3</inf>/HfO<inf>2</inf>/Al<inf>2</inf>O<inf>3</inf> tunnel layer. Applied Physics Letters, 2012. 100(7): pp.072901-4.

DOI: 10.1109/iwpsd.2007.4472463

Google Scholar

[45] Kim, K. and S.Y. Lee, Innovation in 1T1C FRAM technologies for ultra high reliable mega density FRAM and future high density FRAM. Integrated Ferroelectrics, 2006. 81: pp.77-88.

DOI: 10.1080/10584580600657930

Google Scholar

[46] Chong, Y.T., et al., Superparamagnetic behavior in cobalt iron oxide nanotube arrays by atomic layer deposition. Journal of Applied Physics, 2011. 110(4): p.043930.

DOI: 10.1063/1.3627369

Google Scholar

[47] Gupta, R. and B.G. Willis, Nanometer spaced electrodes using selective area atomic layer deposition. Applied Physics Letters, 2007. 90(25): pp.253102-3.

DOI: 10.1063/1.2749429

Google Scholar

[48] Lee, S.W., et al., Atomic Layer Deposition of SrTiO3 Thin Films with Highly Enhanced Growth Rate for Ultrahigh Density Capacitors. Chemistry of Materials, 2011. 23(8): pp.2227-2236.

DOI: 10.1021/cm2002572

Google Scholar

[49] Black, K., et al., SrHfO3 Films Grown on Si(100) by Plasma-Assisted Atomic Layer Deposition. Chemistry of Materials, 2011. 23(10): pp.2518-2520.

DOI: 10.1021/cm200315u

Google Scholar

[50] Popovici, M., et al., Improved EOT and leakage current for metal-insulator-metal capacitor stacks with rutile TiO2. Microelectronic Engineering, 2011. 88(7): pp.1517-1520.

DOI: 10.1016/j.mee.2011.03.063

Google Scholar

[51] Xiang, S., et al., Atomic Layer Deposition of TiO 2 on Graphene for Supercapacitors. Journal of the Electrochemical Society, 2012. 159(4): pp.364-369369.

Google Scholar

[52] Zhang, F., et al., Atomic layer deposition of Pb(Zr, Ti)O-x on 4H-SiC for metal-ferroelectric-insulator-semiconductor diodes. Journal of Applied Physics, 2011. 109(12).

DOI: 10.1063/1.3596574

Google Scholar

[53] Nah, J., et al., Role of Confinement on Carrier Transport in Ge–SixGe1–x Core–Shell Nanowires. Nano Letters, 2011. 12(1): pp.108-112.

DOI: 10.1021/nl2030695

Google Scholar

[54] Sultan, S.M., et al., Electrical Characteristics of Top-Down ZnO Nanowire Transistors Using Remote Plasma ALD. Electron Device Letters, IEEE, 2012. 33(2): pp.203-205.

DOI: 10.1109/led.2011.2174607

Google Scholar

[55] Subannajui, K., et al., An advanced fabrication method of highly ordered ZnO nanowire arrays on silicon substrates by atomic layer deposition. Nanotechnology, 2012. 23(23): p.235607.

DOI: 10.1088/0957-4484/23/23/235607

Google Scholar

[56] Cha, H.G., et al., Enhanced photoluminescence of single crystalline ZnO nanotubes in ZnAl2O4 shell. CrystEngComm, 2012. 14(4): pp.1205-1209.

DOI: 10.1039/c2ce06118j

Google Scholar

[57] Fang, Q., et al., Nucleation and Growth of Platinum Films on High-k/Metal Gate Materials by Remote Plasma and Thermal ALD. Physics Procedia, 2012. 32(0): pp.551-560.

DOI: 10.1016/j.phpro.2012.03.600

Google Scholar

[58] Preiner, M.J. and N.A. Melosh, Creating large area molecular electronic junctions using atomic layer deposition. Applied Physics Letters, 2008. 92(21): pp.213301-3.

DOI: 10.1063/1.2917870

Google Scholar

[59] Likovich, E.M., et al., High-Current-Density Monolayer CdSe/ZnS Quantum Dot Light-Emitting Devices with Oxide Electrodes. Advanced Materials, 2011. 23(39): pp.4521-4525.

DOI: 10.1002/adma.201101782

Google Scholar

[60] Yun, S.J., Y. -W. Ko, and J.W. Lim, Passivation of organic light-emitting diodes with aluminum oxide thin films grown by plasma-enhanced atomic layer deposition. Applied Physics Letters, 2004. 85(21): p.4896.

DOI: 10.1063/1.1826238

Google Scholar

[61] Meyer, J., et al., Reliable thin film encapsulation for organic light emitting diodes grown by low-temperature atomic layer deposition. Applied Physics Letters, 2009. 94(23): p.233305.

DOI: 10.1063/1.3153123

Google Scholar

[62] Dasgupta, N.P., et al., Atomic Layer Deposition of Al-doped ZnO Films: Effect of Grain Orientation on Conductivity. Chemistry of Materials, 2010. 22(16): pp.4769-4775.

DOI: 10.1021/cm101227h

Google Scholar

[63] Park, S. -H.K., et al., Characteristics of Organic Light Emitting Diodes with Al-Doped ZnO Anode Deposited by Atomic Layer Deposition. Japanese Journal of Applied Physics, 2005. 44(No. 7): p. L242-L245.

DOI: 10.1143/jjap.44.l242

Google Scholar

[64] Wu, M.K., et al., ZnO quantum dots embedded in a SiO2nanoparticle layer grown by atomic layer deposition. physica status solidi (RRL) - Rapid Research Letters, 2009. 3(2-3): pp.88-90.

DOI: 10.1002/pssr.200802281

Google Scholar

[65] Shih, Y.T., et al., Amplified spontaneous emission from ZnO in n-ZnO/ZnO nanodots–SiO2composite/p-AlGaN heterojunction light-emitting diodes. Nanotechnology, 2009. 20(16): p.165201.

DOI: 10.1088/0957-4484/20/16/165201

Google Scholar

[66] Meyer, J., et al., Indium-free transparent organic light emitting diodes with Al doped ZnO electrodes grown by atomic layer and pulsed laser deposition. Applied Physics Letters, 2008. 93(7): p.073308.

DOI: 10.1063/1.2975176

Google Scholar

[67] Kong, B.H., et al., InGaN/GaN blue light emitting diodes using Al-doped ZnO grown by atomic layer deposition as a current spreading layer. Journal of Crystal Growth, 2011. 326(1): pp.147-151.

DOI: 10.1016/j.jcrysgro.2011.01.085

Google Scholar

[68] Luka, G., et al., ZnO films grown by atomic layer deposition for organic electronics. Semiconductor Science and Technology, 2012. 27(7): p.074006.

DOI: 10.1088/0268-1242/27/7/074006

Google Scholar

[69] Li, Z. -Y., et al., High quality ultraviolet AlGaN∕GaN multiple quantum wells with atomic layer deposition grown AlGaN barriers. Applied Physics Letters, 2008. 93(13): p.131116.

DOI: 10.1063/1.2996566

Google Scholar

[70] Chen, M. -J., J. -R. Yang, and M. Shiojiri, ZnO-based ultra-violet light emitting diodes and nanostructures fabricated by atomic layer deposition. Semiconductor Science and Technology, 2012. 27(7): p.074005.

DOI: 10.1088/0268-1242/27/7/074005

Google Scholar

[71] Oh, J.R., et al., Wafer-scale colloidal lithography based on self-assembly of polystyrene nanospheres and atomic layer deposition. Journal of Materials Chemistry, 2010. 20(24): p.5025.

DOI: 10.1039/b927532k

Google Scholar

[72] Aberle, A.G., Surface Passivation of crystalline silicon solar cells. Progress in Photovoltaics: Research and Applications, 2000. 8: p.15.

Google Scholar

[73] Hoex, B., et al., Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al[sub 2]O[sub 3]. Applied Physics Letters, 2006. 89(4): p.042112.

DOI: 10.1063/1.2240736

Google Scholar

[74] Blakers, A.W., et al., 22. 8% efficient silicon solar cell. Applied Physics Letters, 1989. 55(13): p.1363.

Google Scholar

[75] Pierre Saint-Cast, J.B., Daniel Kania, Lucas Weiss, Marc Hofmann, Jochen Rentsch, Ralf Preu, Stefan W. Glunz, High-Efficiency c-Si Solar Cells Passivated With ALD and PECVD Aluminum Oxide. IEEE ELECTRON DEVICE LETTERS, 2010. 31(7): p.3.

DOI: 10.1109/led.2010.2049190

Google Scholar

[76] Benick, J., et al., High efficiency n-type Si solar cells on Al 2O3-passivated boron emitters. Applied Physics Letters, 2008. 92(25): p.253504.

DOI: 10.1063/1.2945287

Google Scholar

[77] Chang, Y. -H., et al., Direct probe of heterojunction effects upon photoconductive properties of TiO2nanotubes fabricated by atomic layer deposition. Nanotechnology, 2010. 21(22): p.225602.

DOI: 10.1088/0957-4484/21/22/225602

Google Scholar

[78] Dingemans, G., et al., Controlling the fixed charge and passivation properties of Si(100)/Al2O3 interfaces using ultrathin SiO2 interlayers synthesized by atomic layer deposition. Journal of Applied Physics, 2011. 110(9): p.093715.

DOI: 10.1063/1.3658246

Google Scholar

[79] Dingemans, G., et al., Influence of the Oxidant on the Chemical and Field-Effect Passivation of Si by ALD Al[sub 2]O[sub 3]. Electrochemical and Solid-State Letters, 2011. 14(1): p. H1.

DOI: 10.1149/1.3501970

Google Scholar

[80] Sang, B.D., K. Yamada, A. Konaga, M., High-Efficiency Amorphous Silicon Solar Cells with ZnO as Front Contact. Japanese Journal of Applied Physics, 1999. 38: p.6.

DOI: 10.1143/jjap.38.4983

Google Scholar

[81] Hariskos, D., S. Spiering, and M. Powalla, Buffer layers in Cu(In, Ga)Se2 solar cells and modules. Thin Solid Films, 2005. 480-481: pp.99-109.

DOI: 10.1016/j.tsf.2004.11.118

Google Scholar

[82] Schock, H.W. and R. Noufi, CIGS-based solar cells for the next millennium. Progress in Photovoltaics, 2000. 8(1): pp.151-160.

DOI: 10.1002/(sici)1099-159x(200001/02)8:1<151::aid-pip302>3.0.co;2-q

Google Scholar

[83] A. Shimizu, S.C., T. Sugiyama, A. Yamada, M. Konagai, Zinc-based buffer layer in the Cu(InGa)Se2 thin film solar cells. Thin Solid Films. 361-362: p.5.

DOI: 10.1016/s0040-6090(99)00792-0

Google Scholar

[84] Romeo, A., et al., Development of thin-film Cu(In, Ga)Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications, 2004. 12(23): pp.93-111.

DOI: 10.1002/pip.527

Google Scholar

[85] J. Sterner, J.M., L. Stolt, <StudyonALDIn2S3 Cu(In, Ga)Se2. pdf>. Progress in Photovoltaics: Research and Applications, 2005. 13: p.15.

Google Scholar

[86] Spiering, S., et al., Stability behaviour of Cd-free Cu(In, Ga)Se2 solar modules with In2S3 buffer layer prepared by atomic layer deposition. Thin Solid Films, 2005. 480-481: pp.195-198.

DOI: 10.1016/j.tsf.2004.11.056

Google Scholar

[87] Yasutoshi Ohtake, K.K., Mitsuru Ichikawa, Akira Yamada, Makoto Konagai, Polycrystalline Cu(InGa)Se2 Thin-Film Solar Cells with ZnSe Buffer Layers. Japanese Journal of Applied Physics, 1995. 34: p.6.

DOI: 10.1143/jjap.34.5949

Google Scholar

[88] Platzer-Björkman, C., et al., Zn(O, S) buffer layers by atomic layer deposition in Cu(In, Ga)Se[sub 2] based thin film solar cells: Band alignment and sulfur gradient. Journal of Applied Physics, 2006. 100(4): p.044506.

DOI: 10.1063/1.2222067

Google Scholar

[89] Pettersson, J., C. Platzer-Björkman, and M. Edoff, Temperature-dependent current-voltage and lightsoaking measurements on Cu(In, Ga)Se2solar cells with ALD-Zn1-xMgxO buffer layers. Progress in Photovoltaics: Research and Applications, 2009. 17(7): pp.460-469.

DOI: 10.1002/pip.912

Google Scholar

[90] Jiang, C.Y., et al., Low temperature processing solid-state dye sensitized solar cells. Applied Physics Letters, 2012. 100(11): p.113901.

DOI: 10.1063/1.3693399

Google Scholar

[91] Ganapathy, V., B. Karunagaran, and S. -W. Rhee, Improved performance of dye-sensitized solar cells with TiO2/alumina core–shell formation using atomic layer deposition. Journal of Power Sources, 2010. 195(15): pp.5138-5143.

DOI: 10.1016/j.jpowsour.2010.01.085

Google Scholar

[92] Oregan, B. and M. Gratzel, A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal Tio2 Films. Nature, 1991. 353(6346): pp.737-740.

DOI: 10.1038/353737a0

Google Scholar

[93] Gary Hodes, D.C., All-Solid-State, Semiconductor-Sensitized Nanoporous Solar Cells. Accounts of Chemical Research, 2012. 45: p.9.

DOI: 10.1021/ar200219h

Google Scholar

[94] Park, K., et al., Effect of an Ultrathin TiO2 Layer Coated on Submicrometer-Sized ZnO Nanocrystallite Aggregates by Atomic Layer Deposition on the Performance of Dye-Sensitized Solar Cells. Advanced Materials, 2010. 22(21): pp.2329-2332.

DOI: 10.1002/adma.200903219

Google Scholar

[95] Antila, L.J., et al., ALD Grown Aluminum Oxide Submonolayers in Dye-Sensitized Solar Cells: The Effect on Interfacial Electron Transfer and Performance. The Journal of Physical Chemistry C, 2011. 115(33): pp.16720-16729.

DOI: 10.1021/jp204886n

Google Scholar

[96] Lin, C., et al., Enhanced performance of dye-sensitized solar cells by an Al2O3 charge-recombination barrier formed by low-temperature atomic layer deposition. Journal of Materials Chemistry, 2009. 19(19): p.2999.

DOI: 10.1039/b819337a

Google Scholar

[97] Tina C. Li, M. r.S.G. e., Francisco Fabregat-Santiago, Juan Bisquert, Paulo R. Bueno, Chaiya Prasittichai, Joseph T. Hupp, Tobin J. Marks, Surface Passivation of Nanoporous TiO2 via Atomic Layer Deposition of ZrO2 for Solid-State Dye-Sensitized Solar Cell Applications. The Journal of Physical Chemistry C, 2009. 113: p.6.

DOI: 10.1021/jp906573w

Google Scholar

[98] Kuo, C. -Y. and S. -Y. Lu, Fabrication of a multi-scale nanostructure of TiO2 for application in dye-sensitized solar cells. Nanotechnology, 2008. 19(9): p.095705.

DOI: 10.1088/0957-4484/19/9/095705

Google Scholar

[99] Choi, J. -H., et al., Atomic Layer Deposition of Ta-doped TiO2 Electrodes for Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2011. 158(6): p. B749.

DOI: 10.1149/1.3582765

Google Scholar

[100] Chou, T.P., et al., Hierarchically Structured ZnO Film for Dye-Sensitized Solar Cells with Enhanced Energy Conversion Efficiency. Advanced Materials, 2007. 19(18): pp.2588-2592.

DOI: 10.1002/adma.200602927

Google Scholar

[101] Hamann, T.W., et al., Aerogel Templated ZnO Dye-Sensitized Solar Cells. Advanced Materials, 2008. 20(8): pp.1560-1564.

DOI: 10.1002/adma.200702781

Google Scholar

[102] Thomas W. Hamann, A.B.F.M., Jeffrey W. Elam, Michael J. Pellin, Joseph T. Hupp, Atomic Layer Deposition of TiO2 on Aerogel Templates: New Photoanodes for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 2008. 112: p.5.

DOI: 10.1021/jp802216p

Google Scholar

[103] Liu, L., et al., TiO2 inverse-opal electrode fabricated by atomic layer deposition for dye-sensitized solar cell applications. Energy & Environmental Science, 2011. 4(1): p.209.

DOI: 10.1039/c0ee00086h

Google Scholar

[104] Thomas W. Hamann, O.K.F., and Joseph T. Hupp, Outer-Sphere Redox Couples as Shuttles in Dye-Sensitized Solar Cells. Performance Enhancement Based on Photoelectrode Modification via Atomic Layer Deposition. The Journal of Physical Chemistry C, 2008. 112: p.9.

DOI: 10.1021/jp807395g

Google Scholar

[105] Alex B. F. Martinson, J.W.E., Jun Liu, Michael J. Pellin, Tobin J. Marks, and Joseph T. Hupp, Radial Electron Collection in Dye-Sensitized Solar Cells. Nano Letters, 2008. 8: p.5.

DOI: 10.1021/nl8015285

Google Scholar

[106] Nicholson, P.G. and F.A. Castro, Organic photovoltaics: principles and techniques for nanometre scale characterization. Nanotechnology, 2010. 21(49): p.492001.

DOI: 10.1088/0957-4484/21/49/492001

Google Scholar

[107] Tang, C.W., 2-Layer Organic Photovoltaic Cell. Applied Physics Letters, 1986. 48(2): pp.183-185.

Google Scholar

[108] Peumans, P., S. Uchida, and S.R. Forrest, Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature, 2003. 425(6954): pp.158-162.

DOI: 10.1038/nature01949

Google Scholar

[109] Scully, S.R. and M.D. McGehee, Effects of optical interference and energy transfer on exciton diffusion length measurements in organic semiconductors. Journal of Applied Physics, 2006. 100(3).

DOI: 10.1063/1.2226687

Google Scholar

[110] Zhou, Y., et al., Inverted organic solar cells with ITO electrodes modified with an ultrathin Al2O3 buffer layer deposited by atomic layer deposition. Journal of Materials Chemistry, 2010. 20(29): p.6189.

DOI: 10.1039/c0jm00662a

Google Scholar

[111] Cheun, H., et al., Oriented Growth of Al2O3: ZnO Nanolaminates for Use as Electron-Selective Electrodes in Inverted Polymer Solar Cells. Advanced Functional Materials, 2012. 22(7): pp.1531-1538.

DOI: 10.1002/adfm.201102968

Google Scholar

[112] Schmidt, H., et al., Transient characteristics of inverted polymer solar cells using titaniumoxide interlayers. Applied Physics Letters, 2010. 96(24): p.243305.

DOI: 10.1063/1.3455108

Google Scholar

[113] Seo, H.O., et al., Ultrathin TiO2Films on ZnO Electron-Collecting Layers of Inverted Organic Solar Cell. The Journal of Physical Chemistry C, 2011. 115(43): pp.21517-21520.

DOI: 10.1021/jp2063589

Google Scholar

[114] Lori E. Greene, M.L., Benjamin D. Yuhas, Peidong Yang, ZnO-TiO2 Core−Shell Nanorod/P3HT Solar Cells. The Journal of Physical Chemistry C, 2007. 111: p.6.

DOI: 10.1021/jp077593l

Google Scholar

[115] Schmidt, H., et al., Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode. Applied Physics Letters, 2009. 94(24): p.243302.

DOI: 10.1063/1.3154556

Google Scholar

[116] Wang, D.H., et al., Enhanced High-Temperature Long-Term Stability of Polymer Solar Cells with a Thermally Stable TiOx Interlayer. Journal of Physical Chemistry C, 2009. 113(39): pp.17268-17273.

DOI: 10.1021/jp9060939

Google Scholar

[117] Potscavage, W.J., et al., Encapsulation of pentacene/C[sub 60] organic solar cells with Al[sub 2]O[sub 3] deposited by atomic layer deposition. Applied Physics Letters, 2007. 90(25): p.253511.

DOI: 10.1063/1.2751108

Google Scholar

[118] Eg and G. Services, Fuel cell handbook [electronic resource] / EG&G Technical Services, Inc, ed. L. National Energy Technology2004, Morgantown, WV : U.S. Dept. of Energy, Office of Fossil Energy, National Energy Technology Laboratory.

DOI: 10.2172/819701

Google Scholar

[119] Stambouli, A.B. and E. Traversa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable and Sustainable Energy Reviews, 2002. 6(5): pp.433-455.

DOI: 10.1016/s1364-0321(02)00014-x

Google Scholar

[120] Mölsä, H., L. Niinistö, and M. Utriainen, Growth of yttrium oxide thin films from β-diketonate precursor. Advanced Materials for Optics and Electronics, 1994. 4(6): pp.389-400.

DOI: 10.1002/amo.860040602

Google Scholar

[121] Putkonen, M., et al., Low-Temperature ALE Deposition of Y2O3 Thin Films from β-Diketonate Precursors. Chemical Vapor Deposition, 2001. 7(1): pp.44-50.

DOI: 10.1002/1521-3862(200101)7:1<44::aid-cvde44>3.0.co;2-q

Google Scholar

[122] Ritala, M. and M. Leskelä, Zirconium dioxide thin films deposited by ALE using zirconium tetrachloride as precursor. Applied Surface Science, 1994. 75(1–4): pp.333-340.

DOI: 10.1016/0169-4332(94)90180-5

Google Scholar

[123] Kukli, K., M. Ritala, and M. Leskelä, Low-Temperature Deposition of Zirconium Oxide–Based Nanocrystalline Films by Alternate Supply of Zr[OC(CH3)3]4 and H2O. Chemical Vapor Deposition, 2000. 6(6): pp.297-302.

DOI: 10.1002/1521-3862(200011)6:6<297::aid-cvde297>3.0.co;2-8

Google Scholar

[124] Kukli, K., et al., Atomic layer deposition of zirconium oxide from zirconium tetraiodide, water and hydrogen peroxide. Journal of Crystal Growth, 2001. 231(1–2): pp.262-272.

DOI: 10.1016/s0022-0248(01)01449-x

Google Scholar

[125] Cassir, M., et al., Synthesis of ZrO2 thin films by atomic layer deposition: growth kinetics, structural and electrical properties. Applied Surface Science, 2002. 193(1–4): pp.120-128.

DOI: 10.1016/s0169-4332(02)00247-7

Google Scholar

[126] Putkonen, M., et al., ZrO2 Thin Films Grown on Silicon Substrates by Atomic Layer Deposition with Cp2Zr(CH3)2 and Water as Precursors. Chemical Vapor Deposition, 2003. 9(4): pp.207-212.

DOI: 10.1002/cvde.200306254

Google Scholar

[127] Nam, W.H. and S.W. Rhee, Atomic Layer Deposition of ZrO2 Thin Films Using Dichlorobis[bis-(trimethylsilyl)amido]zirconium and Water. Chemical Vapor Deposition, 2004. 10(4): pp.201-205.

DOI: 10.1002/cvde.200306277

Google Scholar

[128] Putkonen, M., et al., Deposition of yttria-stabilized zirconia thin films by atomic layer epitaxy from [small beta]-diketonate and organometallic precursors. Journal of Materials Chemistry, 2002. 12(3): pp.442-448.

DOI: 10.1039/b107799f

Google Scholar

[129] Bernay, C., et al., Yttria-doped zirconia thin films deposited by atomic layer deposition ALD: a structural, morphological and electrical characterisation. Journal of Physics and Chemistry of Solids, 2003. 64(9–10): pp.1761-1770.

DOI: 10.1016/s0022-3697(03)00105-7

Google Scholar

[130] Shim, J.H., et al., Atomic Layer Deposition of Yttria-Stabilized Zirconia for Solid Oxide Fuel Cells. Chemistry of Materials, 2007. 19(15): pp.3850-3854.

DOI: 10.1021/cm070913t

Google Scholar

[131] Brahim, C., et al., Electrical properties of thin yttria-stabilized zirconia overlayers produced by atomic layer deposition for solid oxide fuel cell applications. Applied Surface Science, 2007. 253(8): pp.3962-3968.

DOI: 10.1016/j.apsusc.2006.08.043

Google Scholar

[132] Chao, C. -C., et al., Improved Solid Oxide Fuel Cell Performance with Nanostructured Electrolytes. ACS Nano, 2011. 5(7): pp.5692-5696.

DOI: 10.1021/nn201354p

Google Scholar

[133] Kwon, C. -W., et al., High-Performance Micro-Solid Oxide Fuel Cells Fabricated on Nanoporous Anodic Aluminum Oxide Templates. Advanced Functional Materials, 2011. 21(6): pp.1154-1159.

DOI: 10.1002/adfm.201002137

Google Scholar

[134] Kharton, V.V., F.M.B. Marques, and A. Atkinson, Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics, 2004. 174(1–4): pp.135-149.

DOI: 10.1016/j.ssi.2004.06.015

Google Scholar

[135] Gourba, E., et al., Characterisation of thin films of ceria-based electrolytes for IntermediateTemperature — Solid oxide fuel cells (IT-SOFC). Ionics, 2003. 9(1): pp.15-20.

DOI: 10.1007/bf02376531

Google Scholar

[136] Ballée, E., et al., Synthesis of a Thin-Layered Ionic Conductor, CeO2−Y2O3, by Atomic Layer Deposition in View of Solid Oxide Fuel Cell Applications. Chemistry of Materials, 2009. 21(19): pp.4614-4619.

DOI: 10.1021/cm9016968

Google Scholar

[137] Fan, Z., et al., Improving solid oxide fuel cells with yttria-doped ceria interlayers by atomic layer deposition. Journal of Materials Chemistry, 2011. 21(29): p.10903.

DOI: 10.1039/c1jm11550b

Google Scholar

[138] Ishihara, T., H. Matsuda, and Y. Takita, Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor. Journal of the American Chemical Society, 1994. 116(9): pp.3801-3803.

DOI: 10.1021/ja00088a016

Google Scholar

[139] Yan, J.W., et al., High-power SOFC using La0. 9Sr0. 1Ga0. 8Mg0. 2O3-delta/Ce0. 8Sm0. 2O2-delta composite film. Electrochemical and Solid State Letters, 2005. 8(8): p. A389-A391.

Google Scholar

[140] Nieminen, M., S. Lehto, and L. Niinisto, Atomic layer epitaxy growth of LaGaO3 thin films. Journal of Materials Chemistry, 2001. 11(12): pp.3148-3153.

DOI: 10.1039/b105978p

Google Scholar

[141] Cassir, M., A. Ringuedé, and L. Niinistö, Input of atomic layer deposition for solid oxide fuel cell applications. Journal of Materials Chemistry, 2010. 20(41): p.8987.

DOI: 10.1039/c0jm00590h

Google Scholar

[142] Brahim, C., et al., ZrO2–In2O3 thin layers with gradual ionic to electronic composition synthesized by atomic layer deposition for SOFC applications. Journal of Materials Chemistry, 2009. 19(6): p.760.

DOI: 10.1039/b813001a

Google Scholar

[143] Shim, J.H., et al., Catalysts with Pt Surface Coating by Atomic Layer Deposition for Solid Oxide Fuel Cells. Journal of The Electrochemical Society, 2010. 157(6): p. B793.

DOI: 10.1149/1.3368787

Google Scholar

[144] Litster, S. and G. McLean, PEM fuel cell electrodes. Journal of Power Sources, 2004. 130(1–2): pp.61-76.

DOI: 10.1016/j.jpowsour.2003.12.055

Google Scholar

[145] Fehribach, J. and R. O'Hayre, Triple Phase Boundaries in Solid-Oxide Cathodes. SIAM Journal on Applied Mathematics, 2009. 70(2): pp.510-530.

DOI: 10.1137/080722667

Google Scholar

[146] Aaltonen, T., et al., Atomic Layer Deposition of Platinum Thin Films. Chemistry of Materials, 2003. 15(9): p.1924-(1928).

DOI: 10.1021/cm021333t

Google Scholar

[147] Jiang, X., et al., Atomic Layer Deposition (ALD) Co-Deposited Pt−Ru Binary and Pt Skin Catalysts for Concentrated Methanol Oxidation. Chemistry of Materials, 2010. 22(10): pp.3024-3032.

DOI: 10.1021/cm902904u

Google Scholar

[148] Hämäläinen, J., et al., Atomic Layer Deposition of Platinum Oxide and Metallic Platinum Thin Films from Pt(acac)2 and Ozone. Chemistry of Materials, 2008. 20(21): pp.6840-6846.

DOI: 10.1021/cm801187t

Google Scholar

[149] King, J.S., et al., Ultralow Loading Pt Nanocatalysts Prepared by Atomic Layer Deposition on Carbon Aerogels. Nano letters, 2008. 8(8): pp.2405-2409.

DOI: 10.1021/nl801299z

Google Scholar

[150] Jiang, X., et al., Application of Atomic Layer Deposition of Platinum to Solid Oxide Fuel Cells. Chemistry of Materials, 2008. 20(12): pp.3897-3905.

DOI: 10.1021/cm7033189

Google Scholar

[151] Jiang, X. and S.F. Bent, Area-Selective Atomic Layer Deposition of Platinum on YSZ Substrates Using Microcontact Printed SAMs. Journal of The Electrochemical Society, 2007. 154(12): p. D648.

DOI: 10.1149/1.2789301

Google Scholar

[152] Kotecki, D.E., A review of high dielectric materials for DRAM capacitors. Integrated Ferroelectrics, 1997. 16(1-4): pp.1-19.

DOI: 10.1080/10584589708013025

Google Scholar

[153] Banerjee, P., et al., Nanotubular metal-insulator-metal capacitor arrays for energy storage. Nat Nano, 2009. 4(5): pp.292-296.

DOI: 10.1038/nnano.2009.37

Google Scholar

[154] Lee, D. -J., et al., Formation of Ru Nanotubes by Atomic Layer Deposition onto an Anodized Aluminum Oxide Template. Electrochemical and Solid-State Letters, 2008. 11(6): p. K61-K63.

DOI: 10.1149/1.2901542

Google Scholar

[155] Joo, J. -H., et al., Investigation of Ruthenium Electrodes for (Ba, Sr)TiO3 Thin Films. Japanese Journal of Applied Physics, 1998. 37(Part 1, No. 6A): pp.3396-3401.

Google Scholar

[156] Bordjiba, T., M. Mohamedi, and L.H. Dao, New Class of Carbon-Nanotube Aerogel Electrodes for Electrochemical Power Sources. Advanced materials, 2008. 20(4): pp.815-819.

DOI: 10.1002/adma.200701498

Google Scholar

[157] Futaba, D.N., et al., Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater, 2006. 5(12): pp.987-994.

DOI: 10.1038/nmat1782

Google Scholar

[158] Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors. Nat Mater, 2008. 7(11): pp.845-854.

Google Scholar

[159] McDonough, J.R., et al., Carbon nanofiber supercapacitors with large areal capacitances. Applied Physics Letters, 2009. 95(24): pp.243109-3.

DOI: 10.1063/1.3273864

Google Scholar

[160] Sun, X., et al., Atomic Layer Deposition of TiO2 on Graphene for Supercapacitors. Journal of The Electrochemical Society, 2012. 159(4): p. A364.

Google Scholar

[161] Sherrill, S.A., et al., MnO2/TiN heterogeneous nanostructure design for electrochemical energy storage. Physical Chemistry Chemical Physics, 2011. 13(33): pp.15221-15226.

DOI: 10.1039/c1cp21815h

Google Scholar

[162] Qu, D. and H. Shi, Studies of activated carbons used in double-layer capacitors. Journal of Power Sources, 1998. 74(1): pp.99-107.

DOI: 10.1016/s0378-7753(98)00038-x

Google Scholar

[163] Huang, Q., et al., Nickel hydroxide/activated carbon composite electrodes for electrochemical capacitors. Journal of Power Sources, 2007. 164(1): pp.425-429.

DOI: 10.1016/j.jpowsour.2006.09.066

Google Scholar

[164] Boukhalfa, S., K. Evanoff, and G. Yushin, Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energy & Environmental Science, 2012. 5(5): pp.6872-6879.

DOI: 10.1039/c2ee21110f

Google Scholar

[165] Pint, C.L., et al., Three dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array templates. Carbon, 2011. 49(14): pp.4890-4897.

DOI: 10.1016/j.carbon.2011.07.011

Google Scholar

[166] Portet, C., et al., Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications. Electrochimica Acta, 2004. 49(6): pp.905-912.

DOI: 10.1016/j.electacta.2003.09.043

Google Scholar

[167] Benson, J., et al., Chemical Vapor Deposition of Aluminum Nanowires on Metal Substrates for Electrical Energy Storage Applications. ACS Nano, 2012. 6(1): pp.118-125.

DOI: 10.1021/nn202979y

Google Scholar

[168] Patil, A., et al., Issue and challenges facing rechargeable thin film lithium batteries. Materials Research Bulletin. 43(8–9): p.1913-(1942).

DOI: 10.1016/j.materresbull.2007.08.031

Google Scholar

[169] Bruce, P.G., B. Scrosati, and J. -M. Tarascon, Nanomaterials for Rechargeable Lithium Batteries. Angewandte Chemie International Edition, 2008. 47(16): pp.2930-2946.

DOI: 10.1002/anie.200702505

Google Scholar

[170] Su, L.W., Y. Jing, and Z. Zhou, Li ion battery materials with core-shell nanostructures. Nanoscale, 2011. 3(10): pp.3967-3983.

DOI: 10.1039/c1nr10550g

Google Scholar

[171] Donders, M., et al., (Invited) All-Solid-State Batteries: A Challenging Route towards 3D Integration. ECS Transactions, 2010. 33(2): pp.213-222.

DOI: 10.1149/1.3485258

Google Scholar

[172] Aaltonen, T., et al., (Invited) ALD of Thin Films for Lithium-Ion Batteries. ECS Transactions, 2011. 41(2): pp.331-339.

DOI: 10.1149/1.3633684

Google Scholar

[173] Knoops, H.C.M., et al., Atomic layer deposition for nanostructured Li-ion batteries. Journal of Vacuum Science & Technology A, 2012. 30(1).

Google Scholar

[174] Chen, X.Y., et al., Ozone-Based Atomic Layer Deposition of Crystalline V2O5 Films for High Performance Electrochemical Energy Storage. Chemistry of Materials, 2012. 24(7): pp.1255-1261.

DOI: 10.1021/cm202901z

Google Scholar

[175] Wang, W., et al., Three-dimensional Ni/TiO2 nanowire network for high areal capacity lithium ion microbattery applications. Nano letters, 2012. 12(2): pp.655-60.

DOI: 10.1021/nl203434g

Google Scholar

[176] Panda, S.K., et al., Nanoscale size effect of titania (anatase) nanotubes with uniform wall thickness as high performance anode for lithium-ion secondary battery. Journal of Power Sources, 2012. 204: pp.162-167.

DOI: 10.1016/j.jpowsour.2011.12.048

Google Scholar

[177] Donders, M.E., et al., Co3O4 as anode material for thin film micro-batteries prepared by remote plasma atomic layer deposition. Journal of Power Sources, 2012. 203(0): pp.72-77.

DOI: 10.1016/j.jpowsour.2011.12.020

Google Scholar

[178] Li, X., et al., Tin Oxide with Controlled Morphology and Crystallinity by Atomic Layer Deposition onto Graphene Nanosheets for Enhanced Lithium Storage. Advanced Functional Materials, 2012. 22(8): pp.1647-1654.

DOI: 10.1002/adfm.201101068

Google Scholar

[179] Riley, L.A., et al., Conformal surface coatings to enable high volume expansion Li-ion anode materials. Chemphyschem : a European journal of chemical physics and physical chemistry, 2010. 11(10): pp.2124-30.

DOI: 10.1002/cphc.201000158

Google Scholar

[180] Ahn, D. and X.C. Xiao, Extended lithium titanate cycling potential window with near zero capacity loss. Electrochemistry Communications, 2011. 13(8): pp.796-799.

DOI: 10.1016/j.elecom.2011.05.005

Google Scholar

[181] Dillon, A.C., et al., HWCVD MoO3 nanoparticles and a-Si for next generation Li-ion anodes. Thin Solid Films, 2011. 519(14): pp.4495-4497.

DOI: 10.1016/j.tsf.2011.01.337

Google Scholar

[182] Lahiri, I., et al., Ultrathin alumina-coated carbon nanotubes as an anode for high capacity Li-ion batteries. Journal of Materials Chemistry, 2011. 21(35): pp.13621-13626.

DOI: 10.1039/c1jm11474c

Google Scholar

[183] Zhao, J., et al., Low temperature preparation of crystalline ZrO(2) coatings for improved elevated-temperature performances of Li-ion battery cathodes. Chemical communications, 2012. 48(65): pp.8108-10.

DOI: 10.1039/c2cc33522k

Google Scholar

[184] Schlapbach, L. and A. Zuttel, Hydrogen-storage materials for mobile applications. Nature, 2001. 414(6861): pp.353-358.

DOI: 10.1038/35104634

Google Scholar

[185] Hull, J.F., et al., Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nature chemistry, 2012. 4(5): pp.383-388.

DOI: 10.1038/nchem.1295

Google Scholar

[186] Klerke, A., et al., Ammonia for hydrogen storage: challenges and opportunities. Journal of Materials Chemistry, 2008. 18(20): pp.2304-2310.

Google Scholar

[187] F. Brown, L., A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles. International Journal of Hydrogen Energy, 2001. 26(4): pp.381-397.

DOI: 10.1016/s0360-3199(00)00092-6

Google Scholar

[188] Sakintuna, B., F. Lamari-Darkrim, and M. Hirscher, Metal hydride materials for solid hydrogen storage: A review. International Journal of Hydrogen Energy, 2007. 32(9): pp.1121-1140.

DOI: 10.1016/j.ijhydene.2006.11.022

Google Scholar

[189] Muir, S.S. and X. Yao, Progress in sodium borohydride as a hydrogen storage material: Development of hydrolysis catalysts and reaction systems. International Journal of Hydrogen Energy, 2011. 36(10): pp.5983-5997.

DOI: 10.1016/j.ijhydene.2011.02.032

Google Scholar

[190] Demirci, U.B., et al., Sodium Borohydride Hydrolysis as Hydrogen Generator: Issues, State of the Art and Applicability Upstream from a Fuel Cell. Fuel Cells, 2010. 10(3): pp.335-350.

DOI: 10.1002/fuce.200800171

Google Scholar

[191] Hynek, S., W. Fuller, and J. Bentley, Hydrogen storage by carbon sorption. International Journal of Hydrogen Energy, 1997. 22(6): pp.601-610.

DOI: 10.1016/s0360-3199(96)00185-1

Google Scholar

[192] Fazle Kibria, A.K.M., et al., Electrochemical hydrogen storage behaviors of CVD, AD and LA grown carbon nanotubes in KOH medium. International Journal of Hydrogen Energy, 2001. 26(8): pp.823-829.

DOI: 10.1016/s0360-3199(01)00007-6

Google Scholar

[193] Mosaner, P., et al., Mg: Nb films produced by pulsed laser deposition for hydrogen storage. Materials Science and Engineering: B, 2004. 108(1-2): pp.33-37.

DOI: 10.1016/j.mseb.2003.10.032

Google Scholar

[194] Hanlon, J.M., et al., The Challenge of Storage in the Hydrogen Energy Cycle: Nanostructured Hydrides as a Potential Solution. Australian Journal of Chemistry, 2012(65): pp.656-671.

DOI: 10.1071/ch11437

Google Scholar

[195] Kabbour, H., et al., Toward New Candidates for Hydrogen Storage:  High-Surface-Area Carbon Aerogels. Chemistry of Materials, 2006. 18(26): pp.6085-6087.

DOI: 10.1021/cm062329a

Google Scholar

[196] Suh, M.P., et al., Hydrogen storage in metal-organic frameworks. Chemical reviews, 2012. 112(2): pp.782-835.

Google Scholar

[197] Norek, M., et al., A comparative study on the hydrogen absorption of thin films at room temperature deposited on non-porous glass substrate and nano-porous anodic aluminum oxide (AAO) template. International Journal of Hydrogen Energy, 2011. 36(18): pp.11777-11784.

DOI: 10.1016/j.ijhydene.2011.06.046

Google Scholar

[198] Gautam, Y.K., et al., Hydrogen absorption and optical properties of Pd/Mg thin films prepared by DC magnetron sputtering. International Journal of Hydrogen Energy, 2012. 37(4): pp.3772-3778.

DOI: 10.1016/j.ijhydene.2011.04.041

Google Scholar

[199] Adams, B.D., C.K. Ostrom, and A. Chen, Hydrogen electrosorption into Pd-Cd nanostructures. Langmuir : the ACS journal of surfaces and colloids, 2010. 26(10): pp.7632-7.

DOI: 10.1021/la9044072

Google Scholar

[200] Rogers, M., et al., Hydrogen storage characteristics of nanograined free-standing magnesium–nickel films. Applied Physics A, 2009. 96(2): pp.349-352.

DOI: 10.1007/s00339-009-5198-y

Google Scholar

[201] Qu, J., et al., Improved hydrogen storage properties in Mg-based thin films by tailoring structures. International Journal of Hydrogen Energy, 2010. 35(15): pp.8331-8336.

DOI: 10.1016/j.ijhydene.2009.12.007

Google Scholar

[202] Singh, S., et al., Nanoscale structure and the hydrogenation of Pd-capped magnesium thin films prepared by plasma sputter and pulsed laser deposition. Journal of Alloys and Compounds, 2007. 441(1-2): pp.344-351.

DOI: 10.1016/j.jallcom.2006.09.108

Google Scholar

[203] Bouhtiyya, S. and L. Roué, Pd/Mg/Pd thin films prepared by pulsed laser deposition under different helium pressures: Structure and electrochemical hydriding properties. International Journal of Hydrogen Energy, 2009. 34(14): pp.5778-5784.

DOI: 10.1016/j.ijhydene.2009.05.094

Google Scholar

[204] Bouhtiyya, S. and L. Roué, Structure and electrochemical hydrogen storage properties of Pd/Mg1−x Al x /Pd thin films prepared by pulsed laser deposition. Journal of Materials Science, 2009. 45(4): pp.946-952.

DOI: 10.1007/s10853-009-4024-4

Google Scholar

[205] Ten Eyck, G.A., et al., Atomic layer deposition of Pd on an oxidized metal substrate. Chemical Vapor Deposition, 2006. 12(5): pp.290-294.

DOI: 10.1002/cvde.200506456

Google Scholar

[206] Ten Eyck, G.A., et al., Plasma-Enhanced Atomic Layer Deposition of Palladium on a Polymer Substrate. Chemical Vapor Deposition, 2007. 13(6-7): pp.307-311.

DOI: 10.1002/cvde.200606508

Google Scholar

[207] Kishore, S., et al., Hydrogen storage in spherical and platelet palladium nanoparticles. Journal of Alloys and Compounds, 2005. 389(1–2): pp.234-242.

DOI: 10.1016/j.jallcom.2004.06.105

Google Scholar

[208] Takagi, H., H. Hatori, and Y. Yamada, Reversible adsorption/desorption property of hydrogen on carbon surface. Carbon, 2005. 43(14): pp.3037-3039.

DOI: 10.1016/j.carbon.2005.06.032

Google Scholar

[209] Akimov, Y.K., Fields of Application of Aerogels (Review). Instruments and Experimental Techniques, 2003. 46(3): pp.287-299.

Google Scholar

[210] Kalidindi, S.B. and B.R. Jagirdar, Nanocatalysis and prospects of green chemistry. ChemSusChem, 2012. 5(1): pp.65-75.

DOI: 10.1002/cssc.201100377

Google Scholar

[211] Baumann, T.F., et al., Atomic Layer Deposition of Uniform Metal Coatings on Highly Porous Aerogel Substrates. Chemistry of Materials, 2006. 18(26): pp.6106-6108.

DOI: 10.1021/cm061752g

Google Scholar

[212] Juergen, B., et al., Ruthenium/aerogel nanocomposites via atomic layer deposition. Nanotechnology, 2007. 18(5): p.055303.

Google Scholar

[213] Hoivik, N.D., et al., Atomic layer deposited protective coatings for micro-electromechanical systems. Sensors and Actuators a-Physical, 2003. 103(1-2): pp.100-108.

DOI: 10.1016/s0924-4247(02)00319-9

Google Scholar

[214] Tripp, M.K., et al., The mechanical properties of atomic layer deposited alumina for use in micro- and nano-electromechanical systems. Sensors and Actuators a-Physical, 2006. 130: pp.419-429.

DOI: 10.1016/j.sna.2006.01.029

Google Scholar

[215] Mohseni, H. and T.W. Scharf, Atomic layer deposition of ZnO/Al2O3/ZrO2 nanolaminates for improved thermal and wear resistance in carbon-carbon composites. Journal of Vacuum Science & Technology A, 2012. 30(1).

DOI: 10.1116/1.3669518

Google Scholar

[216] Scharf, T.W., et al., Atomic layer deposition of tungsten disulphide solid lubricant thin films. Journal of Materials Research, 2004. 19(12): pp.3443-3446.

DOI: 10.1557/jmr.2004.0459

Google Scholar

[217] Lu, J.L., et al., Porous Alumina Protective Coatings on Palladium Nanoparticles by Self-Poisoned Atomic Layer Deposition. Chemistry of Materials, 2012. 24(11): p.2047-(2055).

DOI: 10.1021/cm300203s

Google Scholar

[218] Feng, H., et al., Alumina Over-coating on Pd Nanoparticle Catalysts by Atomic Layer Deposition: Enhanced Stability and Reactivity. Catalysis Letters, 2011. 141(4): pp.512-517.

DOI: 10.1007/s10562-011-0548-8

Google Scholar

[219] Cimatu, K.A., et al., Nanoscale Chemical Imaging of Zinc Oxide Nanowire Corrosion. Journal of Physical Chemistry C, 2012. 116(18): pp.10405-10414.

DOI: 10.1021/jp301922a

Google Scholar

[220] Paussa, L., et al., Protection of silver surfaces against tarnishing by means of alumina/titania-nanolayers. Surface & Coatings Technology, 2011. 206(5): pp.976-980.

DOI: 10.1016/j.surfcoat.2011.03.101

Google Scholar

[221] Biener, M.M., et al., ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity. Nano Letters, 2011. 11(8): pp.3085-3090.

DOI: 10.1021/nl200993g

Google Scholar

[222] Jur, J.S., et al., Atomic Layer Deposition of Conductive Coatings on Cotton, Paper, and Synthetic Fibers: Conductivity Analysis and Functional Chemical Sensing Using All-Fiber, Capacitors. Advanced Functional Materials, 2011. 21(11): p.1993-(2002).

DOI: 10.1002/adfm.201001756

Google Scholar

[223] Rosenthal, A., et al., Gas sensing properties of epitaxial SnO2 thin films prepared by atomic layer deposition. Sensors and Actuators B-Chemical, 2003. 93(1-3): pp.552-555.

DOI: 10.1016/s0925-4005(03)00236-3

Google Scholar

[224] Cianci, E., et al., Atomic layer deposited TiO2 for implantable brain-chip interfacing devices. Thin Solid Films, 2012. 520(14): pp.4745-4748.

DOI: 10.1016/j.tsf.2011.10.197

Google Scholar

[225] Lin, Y.H., et al., Fabrication of tin dioxide nanowires with ultrahigh gas sensitivity by atomic layer deposition of platinum. Journal of Materials Chemistry, 2011. 21(28): pp.10552-10558.

DOI: 10.1039/c1jm10785b

Google Scholar

[226] Korhonen, J.T., et al., Hydrophobic Nanocellulose Aerogels as Floating, Sustainable, Reusable, and Recyclable Oil Absorbents. Acs Applied Materials & Interfaces, 2011. 3(6): pp.1813-1816.

DOI: 10.1021/am200475b

Google Scholar

[227] Sechrist, Z.A., et al., Modification of opal photonic crystals using Al2O3 atomic layer deposition. Chemistry of Materials, 2006. 18(15): pp.3562-3570.

DOI: 10.1021/cm060263d

Google Scholar

[228] Marichy, C., et al., Tin Dioxide Sensing Layer Grown on Tubular Nanostructures by a Non-Aqueous Atomic Layer Deposition Process. Advanced Functional Materials, 2011. 21(4): pp.658-666.

DOI: 10.1002/adfm.201001572

Google Scholar

[229] Korhonen, J.T., et al., Inorganic Hollow Nanotube Aerogels by Atomic Layer Deposition onto Native Nanocellulose Templates. Acs Nano, 2011. 5(3): p.1967-(1974).

DOI: 10.1021/nn200108s

Google Scholar

[230] Braun, P.V., S.A. Rinne, and F. Garcia-Santamaria, Introducing defects in 3D photonic crystals: State of the art. Advanced Materials, 2006. 18(20): pp.2665-2678.

DOI: 10.1002/adma.200600769

Google Scholar

[231] Rugge, A., et al., Tungsten nitride inverse opals by atomic layer deposition. Nano Letters, 2003. 3(9): pp.1293-1297.

DOI: 10.1021/nl034362r

Google Scholar

[232] Liu, L.J., et al., Electrochromic photonic crystal displays with versatile color tunability. Electrochemistry Communications, 2011. 13(11): pp.1163-1165.

DOI: 10.1016/j.elecom.2011.09.007

Google Scholar

[233] Arpin, K.A., M.D. Losego, and P.V. Braun, Electrodeposited 3D Tungsten Photonic Crystals with Enhanced Thermal Stability. Chemistry of Materials, 2011. 23(21): pp.4783-4788.

DOI: 10.1021/cm2019789

Google Scholar

[234] Kolle, M., et al., Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nature Nanotechnology, 2010. 5(7): pp.511-515.

DOI: 10.1038/nnano.2010.101

Google Scholar