Multifunctional Mesoporous Nanocomposites

Article Preview

Abstract:

Multifunctional behaviour viz., ferroelectric, ferromagnetic and magnetodielectric coupling has been reported in a number of nanocomposites. The latter were synthesized by growing nanoparticles of different kinds within a suitable matrix. Different morphologies of the particles were introduced. Both natural as well as synthetic mesoporous materials were used to prepare nanocomposite systems. Mesoporous structures with large surface areas and pore volumes were found to be effective in developing most efficient drug delivery systems. For identical reasons such structures were suitable as catalysts in various industrially important reaction processes, as humidity and gas sensors, as magnetic sensors. Mesoporous carbon based nanocomposites used as electrodes were found to improve the efficiency of lithium-ion batteries. Nanocomposites using mesoporous carbon and carbon nanotubes were shown to improve the performance of dye sensitized solar cells. In this article, the above mentioned developments are reviewed and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

98-119

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Eerenstein, M. Wiora, J. L. Prieto, J. F. Scott, N. D. Mathur, Nature Mater. 6 (2007)348-351.

Google Scholar

[2] A. Khitun, D. E. Nikonov, K. L. Wang, J. Appl. Phys. 106 (2009)123909(1-7).

Google Scholar

[3] M. Fiebig, T. Lottermoser, D. Frohlich, A. V. Goltsev, R. V. Pisarev, Nature (London) 419(2002) 818.

Google Scholar

[4] R. Seshadri, N. A. Hill, Chem. Mater. 13 (2001) 2892.

Google Scholar

[5] C.A. J. Lin, T.Y. Yang, C.H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. L. Shen, H.H. Wang, H.I. Yeh, W. J. Parak, W. H. Chang ACSNano 3 (2009) 395.

Google Scholar

[6] H. He, C. Xie, J. Ren, Anal. Chem 80 (2008) 5951.

Google Scholar

[7] C. L. Fang, K. Qian, J. Zhu, S. Wang, X. Lv, S. H. Yu, Nanotechnology 19 (2008) 125601.

Google Scholar

[8] X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, S. Buddhudu, Adv. Func. Mater. 4 (2004) 920.

Google Scholar

[9] S. Y. Tan, S. R. Shannigrahi, S. H. Tan, F. E. H. Tay J. Appl. Phys. 103 (2008) 094105(1-4).

Google Scholar

[10] L. Yan , Z. Xing, Z. Wang, T. Wang, G. Lei, J. Li, Appl. Phys. Lett. 94 (2009)192902.

Google Scholar

[11] K. Raidongia, A. Nag, A. Sundaresan, C. N. R. Rao, Appl. Phys. Lett. 97 (2010)062904.

Google Scholar

[12] V. Corral-Flores, D. Bueno-Baques, R. F. Ziolo, Acta Mater. 58 (2010) 764.

Google Scholar

[13] S. Mitra, O. Mondal, D. R. Saha, A. Datta, S. Banerjee, D. Chakravorty J. Phys. Chem. C 115 (2011) 14285.

Google Scholar

[14] M. M. Parish, P. B. Littlewood, Phys. Rev. Lett. 101 (2008) 166602.

Google Scholar

[15] P. Hajra, S. Dutta, P. Brahma, D. Chakravorty, J. Magn. Magn. Mater. 323 (2011) 864-867.

Google Scholar

[16] R.P. Maiti, S. Basu , S. Bhattacharya, D. Chakravorty, J. Non-Crystalline Solids 355 (2009) 2254.

Google Scholar

[17] S. Bhattacharya, A. Datta, D. Chakravorty, Appl. Phys. Lett. 96 (2010) 093109(1-3).

Google Scholar

[18] S. Bhattacharya, A. Datta, S. Dhara, D. Chakravorty, J. Phys. D: Appl. Phys. 42 (2009) 235504.

Google Scholar

[19] A. Mandal, A. Bose, S. Mitra, A. Datta, S. Banerjee, D. Chakravorty, J. Magn. Magn. Mater. 324 (2012) 2861.

Google Scholar

[20] S. Mitra, A. Mandal, A. Datta, S. Banerjee, D. Chakravorty, Euro. Phys. Lett.

Google Scholar

[92] (2010) 26003.

Google Scholar

[21] A. Mandal, S. Mitra, A. Datta, S. Banerjee, D. Chakravorty, J. Appl. Phys. 111 (2012) 074303.

Google Scholar

[22] T.S. Vaishnavi, P. Haridoss, C. Vijayan Mater. Lett. 62 (2008)1649.

Google Scholar

[23] T. Wagner, T. Sauerwald, C-D. Kohl, T. Waitz, C. Weidmann, M. Tiemann Thin Solid Films 517 (2009) 6170.

DOI: 10.1016/j.tsf.2009.04.013

Google Scholar

[24] S. Banerjee, A. Datta, A. Bhaumik, D. Chakravorty J. Appl. Phys. 110 (2011) 064316(1-6).

Google Scholar

[25] S. Banerjee, M. K. Bhunia, A. Bhaumik, D. Chakravorty J. Appl. Phys. 111 (2012) 054310(1-6).

Google Scholar

[26] K. Ariga, A. Vinu, Y. Yamauchi, Q. Ji, J. P. Hill. Bull Chem Soc Jpn 85 (2012)1.

Google Scholar

[27] Y.W. Chen-Yang, Y. T. Chen, C. C. Li, H. C. Yu, Y. C. Chuang, J. H. Su. Mater. Lett. 65 (2011) 1060.

Google Scholar

[28] J. Lü, E. Shen, Y. Li, D. Xiao, E. Wang, Lin Xu, Crys. Grow. Design 5 (2005) 67.

Google Scholar

[29] Y. Ma, S. L. Suib, T. Ressler, J. Wong, M. Lovallo, M. Tsapatsis, Chem. Mater 11 (1999) 3545.

Google Scholar

[30] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck Nature 359 (1992) 710.

Google Scholar

[31] K. Zimny, J. L. Blin, M. J. Stébé J. Phys. Chem. C 113 11285 (2009).

Google Scholar

[32] Q. He, J. Shi, J. Zhao, Y. Chen, F. Chen, J. Mater. Chem. 19 (2009) 6498.

Google Scholar

[33] A. I. Cosutchi, C. Hulubei, I. Stoica, S. Ioan, J Polym Res 18 (2011) 2389.

Google Scholar

[34] K. Zimny, C. Carteret, M. J. Stébé, J. L. Blin J. Phys. Chem. C 115 (2011) 8684.

Google Scholar

[35] X. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, J. I. Zink, ACSNano 2 889 (2008).

DOI: 10.1021/nn800072t

Google Scholar

[36] A. Sousa, D. A. Maria, R. G. Sousa, E. M. B. Sousa, J. Mater. Sci. 45 1478 (2010).

Google Scholar

[37] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 279 (1998) 548.

Google Scholar

[38] D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. 120 (1998) 6024.

Google Scholar

[39] Z. Zhang, F. Zuo, P. J. Feng, Mater. Chem. 20 (2010) 2206.

Google Scholar

[40] F. Kleitz, S. H. Choi, R. Ryoo, Chem. Commun. 20 (2003) 2136.

Google Scholar

[41] X. Fan, Y. Wang, X. Chen, L. Gao, W. Luo, Y. Yuan, Z. Li,T. Yu, J. Zhu, Z. Zou, Chem. Mater. 22 (2010) 1276.

Google Scholar

[42] S.G. Liu, H. Wang, J.P. Li, N. Zhao, W. Wei, Y.H. Sun, Mater. Res. Bull. 42 (2007) 171.

Google Scholar

[43] F. Jiao, A. H. Hill, A. Harrison, A. Berko, A. V. Chadwick, P. G. Bruce, J. Am. Chem. Soc. 130 (2008) 5262.

Google Scholar

[44] J. Haetge, C. Suchomski, T. Brezesinski, Inorg. Chem. 49 (2010) 11619.

Google Scholar

[45] S. C. Laha, R. Ryoo, Chem. Commun. (2003) 2138.

Google Scholar

[46] A.R. Caamal-Parra, R.A. Medina-Esquivel, T. Lopez, J.J. Alvarado-Gil, P. Quintana, J. Non-Crystalline Solids 353 (2007) 971.

DOI: 10.1016/j.jnoncrysol.2006.12.065

Google Scholar

[47] C. He, B. Tian, J. Zhang, Micropor. Mesopor. Mater. 126 (2009) 50.

Google Scholar

[48] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Nature 395 (1998) 583.

DOI: 10.1038/26936

Google Scholar

[49] D. Chandra, S. Mridha, D. Basak, A. Bhaumik, Chem. Commun. (2009) 2384-2386.

Google Scholar

[50] A. Sinhamahapatra, A. K. Giri, P. Pal, S. K. Pahari, H. C. Bajaj, A. B. Panda, J. Mater. Chem. (2012) DOI: 10. 1039/c0xx00000x.

Google Scholar

[51] C. Wu, P. Yin, X. Zhu, C. O. Yang, Y. Xie, J. Phys. Chem. B 110 (2006)17806.

Google Scholar

[52] Y. Zhang, Y. Chen, T. Wang, J. Zhou, Y. Zhao, Micropor. Mesopor. Mater. 114 (2008) 257.

Google Scholar

[53] S. K. Das, M. Nandi, S. Giri, A. Bhaumik, Micropor. Mesopor. Mater. 117 (2009) 362-367.

Google Scholar

[54] B. Lee, D. Lu, J. N. Kondo, K. Domen, J. Am. Chem. Soc. 124 (2002) 11256-11257.

Google Scholar

[55] S. Banerjee, A. Santhanam, A. Dhathathreyan, P. M. Rao, Langmuir 19 (2003) 5522-5525.

Google Scholar

[56] B. Ji, D. Chen, X. Jiao, Z. Zhao, Y. Jiao, Mater. Lett. 64 (2010) 1836-1838.

Google Scholar

[57] L. Zhao, Y. Yu, L. Song, M. Ruan, X. Hu, A. Larbot, Appl. Catal. A: General 263 (2004) 171–177.

Google Scholar

[58] M. Yada, H. Kitamura, M. Machida, T. Kijima, Inorg. Chem. 37 (1998) 6470-6475.

DOI: 10.1021/ic980147f

Google Scholar

[59] Q. Huo, D. Margolese, U. Ciesla, P. Feng, T. Gier, P. Sieger, R. Leon, P. Petroff, F. Schüth, G. D. Stucky, Nature 368 (1994) 317.

DOI: 10.1038/368317a0

Google Scholar

[60] M. Yada, H. Kitamura, A. Ichinose, M. Machida, T. Kijima, Angew. Chem., Int. Ed. 38 (1999) 3506.

Google Scholar

[61] Y. S. Lin, C. L. Haynes, Chem. Mater. 21(2009) 3979.

Google Scholar

[62] J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon, T. Hyeon, Angew. Chem. Int. Ed. 47 (2008) 8438.

DOI: 10.1002/anie.200802469

Google Scholar

[63] S. Banerjee, P. Hajra, A. Bhaumik, D. Chakravorty, Mater. Lett. 79 (2012) 65.

Google Scholar

[64] S. Alam, C. Anand, R. Logudurai, V. V. Balasubramanian, K. Ariga, A. C. Bose, T. Mori, P. Srinivasu, A. Vinu, Micropor. Mesopor. Mater. 121 (2009) 178.

DOI: 10.1016/j.micromeso.2009.01.029

Google Scholar

[65] Y. Du, S. Liu, Y. Ji, Y. Zhang, N. Xiao, F. Xiao, J. Magn. Magn. Mater. 320 (2008) (1932).

Google Scholar

[66] X. Q. Wang, M. Chen, L. Li, D. F. Jin, H. X. Jin, H. L. Ge, Mater. Lett. 64 (2010) 708.

Google Scholar

[67] S. L. Gai , P. P. Yang , C. X. Li , W. X. Wang , Y. L. Dai , N. Niu, J. Lin , Adv. Funct. Mater. 20 (2010) 1166.

Google Scholar

[68] X. H. Guo, Y. H. Deng, D. Gu, R. C. Che, D. Y. Zhao, J. Mater. Chem. 19 (2009) 6706.

Google Scholar

[69] Y. F. Zhu, T. Ikoma, N. Hanagata, S. Kaskel, Small 6 (2010) 471.

Google Scholar

[70] Y. F. Zhu, E. Kockrick, T. Ikoma, N. Hanagata, S. Kaskel, Chem. Mater. 21 (2009) 2547.

Google Scholar

[71] P. G. Wu, J. H. Zhu, Z. H. Xu, Adv. Func. Mater. 14 (2004) 345.

Google Scholar

[72] Y. S. Lin, S. H. Wu, Y. Hung, Y. H. Chou, C. Chang, M. L. Lin, C. P. Tsai, C. Y. Mou, Chem. Mater. 18 (2006) 5170.

Google Scholar

[73] F. Jiao, H. Frei, Angew. Chem. Int. Ed. 48 (2009) 1841.

Google Scholar

[74] R. Wang, X. Liu, Y. He, Q. Yuan, X. Li, G. Lu, T. Zhang, Sens. Actuators B Chem. 145 (2010) 386.

Google Scholar

[75] Y. Sun, G. Ji, M. Zheng, X. Chang, S. Li, Y. Zhang J. Mater. Chem. 20 (2010) 945.

Google Scholar

[76] H. Kim, J. Cho, J. Mater. Chem. 18 (2008) 771.

Google Scholar

[77] H.R. Emamian, A. Honarbakhsh-raouf, A. Ataie, A. Yourdkhani, J. Alloys Compd. 480 (2009) 681.

DOI: 10.1016/j.jallcom.2009.02.016

Google Scholar

[78] Z. Zhang, F. Zuo, P. Feng, J. Mater. Chem. 20 (2010) 2206.

Google Scholar

[79] W. H. Zhang, J. L. Shi, L. Z. Wang, D. S. Yan, Chem. Mater. 12 (2000) 1408.

Google Scholar

[80] P. P. Yang, Z. W. Quan, Z. Y. Hou, C. X. Li, X. J. Kang, Z. Y. Cheng, J. Lin, Biomaterials 30 (2009) 4786.

Google Scholar

[81] A. B. Fuertes, M. Sevilla, T. Valdes-Solis, P. Tartaj, Chem. Mater. 19 (2007) 5418.

Google Scholar

[82] X. W. Lou, L. A. Archer, Z. Yang, Adv. Mater. 20 (2008) 3987.

Google Scholar

[83] X. J. Wu, D. S. Xu, J. Am. Chem. Soc. 131 (2009) 2774.

Google Scholar

[84] M. Kim, K. Sohn, H. B. Na, T. Hyeon, Nanoletters 2 (2002) 1383.

Google Scholar

[85] L. Wang, T. Fei, J. Deng, Z. Lou, R. Wang, T. Zhang, J. Mater. Chem. (2012) DOI: 10. 1039/c2jm32520a.

Google Scholar

[86] Y. Zhu, E. Kockrick, T Ikoma, N. Hanagata, S. Kaskel Chem. Mater. 21 (2009) 2547.

Google Scholar

[87] J. Zhang, J. Ma, J. Jiang, X.S. Zhao J. Mater. Res. 25 (2010)1476.

Google Scholar

[88] M. Arruebo, M. Galán, N. Navascués, C. Téllez, C. Marquina, M. R. Ibarra, J. Santamaría, Chem. Mater. 18 (2006)1911-(1919).

DOI: 10.1021/cm051646z

Google Scholar

[89] P. Yang, Z. Quan, C. Li, X. Kang, H. Lian, J. Lin, Biomaterials 29 (2008) 4341–4347.

Google Scholar

[90] P. Yang, Z. Quan, Z. Hou, C. Li, X. Kang, Z. Cheng, J. Lin, Biomaterials 30 (2009) 4786–4795.

Google Scholar

[91] J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon, T. Hyeon, Angew. Chem. Int. Ed. 47 (2008) 8438 –8441.

DOI: 10.1002/anie.200802469

Google Scholar

[92] S. S. Huang , P. P. Yang , Z. Y. Cheng , C. X. Li , Y. Fan , D. Y. Kong, J. Lin, J. Phys. Chem. C 112 (2008) 7130.

Google Scholar

[93] D. Castanotto, J. J. Rossi, Nature 457 (2009) 426.

Google Scholar

[94] I. Slowing, J. L. Vivero-Escoto, C. W. Wu, V. S. Lin, Adv. Drug Deliv. Rev. 60 (2008) 1278.

Google Scholar

[95] S. Gai, P. Yang, J. Hao, W. Wang, N. Niu, F. He, D. Wanga, J. Lin, Micropor. Mesopor. Mater. 131 (2010)128–135.

Google Scholar

[96] J. Liu, W. Bu, S. Zhang, F. Chen, H. Xing, L. Pan, L. Zhou, W. Peng, J. Shi, Chem. Eur. J. 18 (2012) 233.

Google Scholar

[97] Y. Shao, X. Tian, W. Hu, Y. Zhang, H. Liu, H. He, Y. Shen, F. Xie, L. Li, Biomaterials 33 (2012) 6438-6446.

Google Scholar

[98] H. Wu, G. Liu, S. Zhang, J. Shi, L. Zhang, Y. Chen, F. Chena, H. Chena, J. Mater. Chem. 21 (2011) 3037.

Google Scholar

[99] J. Kim, Y. Piao, N. Lee, Y. I. Park, I. H. Lee, J. H. Lee, S. R. Paik, T. Hyeon, Adv. Mater. 22 (2010) 57–60.

Google Scholar

[100] Y. Chen, H. Chen, D. Zeng, Y. Tian, F. Chen, J. Feng, J. Shi, ACSNANAO 4 (2010) 6001-6013.

Google Scholar

[101] F. U. Hart, M. H. Hart, Nat. Struct. Mol. Biol. 16 (2009) 574.

Google Scholar

[102] L. Wang, J. Bai, X. Bo, X. Zhang, L. Guo, Talanta 83 (2011) 1386–1391.

Google Scholar

[103] X. Jiang, Y. Wu, X. Mao, X. Cui, L. Zhu, Sens. Actuators B Chem. 153 (2011) 158–163.

Google Scholar

[104] J. Li, D. Kuang, Y. Feng, F. Zhang, M. Liu, Microchim Acta 176 (2012) 73–80.

Google Scholar

[105] Z. Shao, B. Tian, J. Zhang Mater. Lett. 63 (2009)1705.

Google Scholar

[106] Z. Bian, J. Zhu, S. Wang, Y. Cao, X. Qian, H. Li, J. Phys. Chem. C 112 (2008) 6258.

Google Scholar

[107] M. Xue, L. Huang, J.Q. Wang, Y. Wang, L. Gao, J. H. Zhu, Z. G. Zou, Nanotechnology 19 (2008) 185604.

Google Scholar

[108] N. Perkas, Y. Wang, Y. Koltypin, A. Gedanken, S. Chandrasekaran, Chem. Commun. (2001) 988.

Google Scholar

[109] Q. Yuan, Y. Liu, L. L. Li, Z. X. Li, C. J. Fang, W. T. Duan, X. G. Li, C. H. Yan, Micropor. Mesopor. Mater. 124 (2009)169.

Google Scholar

[110] Z. Zhu, X. Li, Q. Zhao, H. Li, Y. Shen, G. Chen, Chem. Eng. J. 165 (2010) 64.

Google Scholar

[111] F. Jiao, H. Frei, Angew. Chem. Int. Ed. 48 (2009)1841.

Google Scholar

[112] Y. Liu, H. Tsunoyama, T. Akita, T. Tsukuda, J. Phys. Chem. C 113 (2009)13457.

Google Scholar

[113] K. Inumaru, M. Yasui, T. Kasahara, K. Yamaguchi, A. Yasuda, S. Yamanaka, J. Mater. Chem. 21 12117 (2011).

Google Scholar

[114] D. Kubička, P. Šimáček, N. Žilkova, Top Catal 52 (2009)161.

Google Scholar

[115] Q. Qia, T. Zhanga, X. Zheng, L. Wanc, Sens. Actuators B Chem. 135 (2008) 255.

Google Scholar

[116] J. Tu, R. Wang,W. Geng, X. Lai, T. Zhang, Nan Li, N. Yuec, X. Li, Sens. Actuators Chem. 136 (2009) 392.

Google Scholar

[117] Q. Yuan, N. Li, J. Tua, X. Li, R. Wang, T. Zhang, C. Shao, Sens. Actuators B Chem. 149 (2010) 413.

Google Scholar

[118] B. Yuliarto, H. S. Zhou,T. Yamada, I. Honma, Y. Katsumura, M. Ichihara, Anal. Chem. 76 (2004) 6719.

Google Scholar

[119] G. Li, S. Kawi, Sens. Actuators B Chem. 59 (1999)1.

Google Scholar

[120] J. Yang, K. Hidajat, S. Kawi, J. Mater. Chem. 19 (2009) 292.

Google Scholar

[121] Y. Feng, R. Yao, L. Zhang, Mater. Chem. Phys. 89 (2005) 311.

Google Scholar

[122] D. Lu, J. Lei, Z. Tian, L. Wang, J. Zhang, Dyes and Pigments 94 (2012) 239.

Google Scholar

[123] T.W. Sung, Y. L. Lo, Sens. Actuators B Chem. 165 (2012) 119.

Google Scholar

[124] T. Balaji, S. A. El-Safty, H. Matsunaga, T. Hanaoka, F. Mizukami, Angew. Chem. Int. Ed. 45 (2006) 7202.

DOI: 10.1002/anie.200602453

Google Scholar

[125] K. Kledzik, M. Orłowska, D. Patralska, M. Gwiazda, J. Jezierska, S. Pikus, R. Ostaszewski, A.M. Kłonkowski, Appl. Surf. Sci. 254 (2007) 441.

DOI: 10.1016/j.apsusc.2007.06.006

Google Scholar

[126] Z. Li, N. Liu, X. Wang, C. Wang, Y. Qi, L. Yin, J. Mater. Chem. (2012) DOI: 10. 1039/c2jm33195k.

Google Scholar

[127] G. Wang, H. Liu, J. Liu, S. Qiao, G. M. Lu, P. Munroe, H. Ahn, Adv. Mater. 22 (2010) 4944.

Google Scholar

[128] Y. Zhou, Y. Kim, C. Jo, J, Lee, C.W. Lee, S. Yoon, Chem. Commun. 47 4(2011) 944.

Google Scholar

[129] M. Y. Chenga, B. J. Hwanga, J. Power Sources 195 (2010) 4977.

Google Scholar

[130] B. Sun, H. Liu, P. Munroe, H. Ahn and G. Wang, Nano Res. (2012)DOI 10. 1007/s12274-012-0231-4.

Google Scholar

[131] S. Ko, J. I. Lee, H. S. Yang, S. Park and U. Jeong, Adv. Mater. (2012) DOI: 10. 1002/adma. 201201821.

Google Scholar

[132] W. Suna, X. Suna, T. Penga, Y. Liua, H. Zhua, S. Guoa, X. Z. Zhao, J. Power Sources 201 (2012) 402.

Google Scholar

[133] E. Ramasamy, C. Jo, A. Anthonysamy, I. Jeong, J. K. Kim, J. Lee, Chem. Mater. 24 (2012)1575.

Google Scholar

[134] Y. Jo, J. Y. Cheon, J. Yu, H. Y. Jeong, C. H. Han, Y. Jun and S. H. Joo, Chem. Commun. (2012) DOI: 10. 1039/c2cc30923h.

Google Scholar

[135] Y. Itzhaik, O. Niitsoo, M. Page, Gary Hodes, J. Phys. Chem. C 113 (2009) 4255.

Google Scholar