p.32
p.55
p.72
p.81
p.98
p.120
p.127
p.133
p.147
Multifunctional Mesoporous Nanocomposites
Abstract:
Multifunctional behaviour viz., ferroelectric, ferromagnetic and magnetodielectric coupling has been reported in a number of nanocomposites. The latter were synthesized by growing nanoparticles of different kinds within a suitable matrix. Different morphologies of the particles were introduced. Both natural as well as synthetic mesoporous materials were used to prepare nanocomposite systems. Mesoporous structures with large surface areas and pore volumes were found to be effective in developing most efficient drug delivery systems. For identical reasons such structures were suitable as catalysts in various industrially important reaction processes, as humidity and gas sensors, as magnetic sensors. Mesoporous carbon based nanocomposites used as electrodes were found to improve the efficiency of lithium-ion batteries. Nanocomposites using mesoporous carbon and carbon nanotubes were shown to improve the performance of dye sensitized solar cells. In this article, the above mentioned developments are reviewed and discussed.
Info:
Periodical:
Pages:
98-119
Citation:
Online since:
December 2012
Authors:
Price:
Сopyright:
© 2013 Trans Tech Publications Ltd. All Rights Reserved
Citation:
[1] W. Eerenstein, M. Wiora, J. L. Prieto, J. F. Scott, N. D. Mathur, Nature Mater. 6 (2007)348-351.
[2] A. Khitun, D. E. Nikonov, K. L. Wang, J. Appl. Phys. 106 (2009)123909(1-7).
[3] M. Fiebig, T. Lottermoser, D. Frohlich, A. V. Goltsev, R. V. Pisarev, Nature (London) 419(2002) 818.
[4] R. Seshadri, N. A. Hill, Chem. Mater. 13 (2001) 2892.
[5] C.A. J. Lin, T.Y. Yang, C.H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. L. Shen, H.H. Wang, H.I. Yeh, W. J. Parak, W. H. Chang ACSNano 3 (2009) 395.
[6] H. He, C. Xie, J. Ren, Anal. Chem 80 (2008) 5951.
[7] C. L. Fang, K. Qian, J. Zhu, S. Wang, X. Lv, S. H. Yu, Nanotechnology 19 (2008) 125601.
[8] X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, S. Buddhudu, Adv. Func. Mater. 4 (2004) 920.
[9] S. Y. Tan, S. R. Shannigrahi, S. H. Tan, F. E. H. Tay J. Appl. Phys. 103 (2008) 094105(1-4).
[10] L. Yan , Z. Xing, Z. Wang, T. Wang, G. Lei, J. Li, Appl. Phys. Lett. 94 (2009)192902.
[11] K. Raidongia, A. Nag, A. Sundaresan, C. N. R. Rao, Appl. Phys. Lett. 97 (2010)062904.
[12] V. Corral-Flores, D. Bueno-Baques, R. F. Ziolo, Acta Mater. 58 (2010) 764.
[13] S. Mitra, O. Mondal, D. R. Saha, A. Datta, S. Banerjee, D. Chakravorty J. Phys. Chem. C 115 (2011) 14285.
[14] M. M. Parish, P. B. Littlewood, Phys. Rev. Lett. 101 (2008) 166602.
[15] P. Hajra, S. Dutta, P. Brahma, D. Chakravorty, J. Magn. Magn. Mater. 323 (2011) 864-867.
[16] R.P. Maiti, S. Basu , S. Bhattacharya, D. Chakravorty, J. Non-Crystalline Solids 355 (2009) 2254.
[17] S. Bhattacharya, A. Datta, D. Chakravorty, Appl. Phys. Lett. 96 (2010) 093109(1-3).
[18] S. Bhattacharya, A. Datta, S. Dhara, D. Chakravorty, J. Phys. D: Appl. Phys. 42 (2009) 235504.
[19] A. Mandal, A. Bose, S. Mitra, A. Datta, S. Banerjee, D. Chakravorty, J. Magn. Magn. Mater. 324 (2012) 2861.
[20] S. Mitra, A. Mandal, A. Datta, S. Banerjee, D. Chakravorty, Euro. Phys. Lett.
[92] (2010) 26003.
[21] A. Mandal, S. Mitra, A. Datta, S. Banerjee, D. Chakravorty, J. Appl. Phys. 111 (2012) 074303.
[22] T.S. Vaishnavi, P. Haridoss, C. Vijayan Mater. Lett. 62 (2008)1649.
[23] T. Wagner, T. Sauerwald, C-D. Kohl, T. Waitz, C. Weidmann, M. Tiemann Thin Solid Films 517 (2009) 6170.
[24] S. Banerjee, A. Datta, A. Bhaumik, D. Chakravorty J. Appl. Phys. 110 (2011) 064316(1-6).
[25] S. Banerjee, M. K. Bhunia, A. Bhaumik, D. Chakravorty J. Appl. Phys. 111 (2012) 054310(1-6).
[26] K. Ariga, A. Vinu, Y. Yamauchi, Q. Ji, J. P. Hill. Bull Chem Soc Jpn 85 (2012)1.
[27] Y.W. Chen-Yang, Y. T. Chen, C. C. Li, H. C. Yu, Y. C. Chuang, J. H. Su. Mater. Lett. 65 (2011) 1060.
[28] J. Lü, E. Shen, Y. Li, D. Xiao, E. Wang, Lin Xu, Crys. Grow. Design 5 (2005) 67.
[29] Y. Ma, S. L. Suib, T. Ressler, J. Wong, M. Lovallo, M. Tsapatsis, Chem. Mater 11 (1999) 3545.
[30] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck Nature 359 (1992) 710.
[31] K. Zimny, J. L. Blin, M. J. Stébé J. Phys. Chem. C 113 11285 (2009).
[32] Q. He, J. Shi, J. Zhao, Y. Chen, F. Chen, J. Mater. Chem. 19 (2009) 6498.
[33] A. I. Cosutchi, C. Hulubei, I. Stoica, S. Ioan, J Polym Res 18 (2011) 2389.
[34] K. Zimny, C. Carteret, M. J. Stébé, J. L. Blin J. Phys. Chem. C 115 (2011) 8684.
[35] X. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, J. I. Zink, ACSNano 2 889 (2008).
DOI: 10.1021/nn800072t
[36] A. Sousa, D. A. Maria, R. G. Sousa, E. M. B. Sousa, J. Mater. Sci. 45 1478 (2010).
[37] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 279 (1998) 548.
[38] D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. 120 (1998) 6024.
[39] Z. Zhang, F. Zuo, P. J. Feng, Mater. Chem. 20 (2010) 2206.
[40] F. Kleitz, S. H. Choi, R. Ryoo, Chem. Commun. 20 (2003) 2136.
[41] X. Fan, Y. Wang, X. Chen, L. Gao, W. Luo, Y. Yuan, Z. Li,T. Yu, J. Zhu, Z. Zou, Chem. Mater. 22 (2010) 1276.
[42] S.G. Liu, H. Wang, J.P. Li, N. Zhao, W. Wei, Y.H. Sun, Mater. Res. Bull. 42 (2007) 171.
[43] F. Jiao, A. H. Hill, A. Harrison, A. Berko, A. V. Chadwick, P. G. Bruce, J. Am. Chem. Soc. 130 (2008) 5262.
[44] J. Haetge, C. Suchomski, T. Brezesinski, Inorg. Chem. 49 (2010) 11619.
[45] S. C. Laha, R. Ryoo, Chem. Commun. (2003) 2138.
[46] A.R. Caamal-Parra, R.A. Medina-Esquivel, T. Lopez, J.J. Alvarado-Gil, P. Quintana, J. Non-Crystalline Solids 353 (2007) 971.
[47] C. He, B. Tian, J. Zhang, Micropor. Mesopor. Mater. 126 (2009) 50.
[48] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Nature 395 (1998) 583.
DOI: 10.1038/26936
[49] D. Chandra, S. Mridha, D. Basak, A. Bhaumik, Chem. Commun. (2009) 2384-2386.
[50] A. Sinhamahapatra, A. K. Giri, P. Pal, S. K. Pahari, H. C. Bajaj, A. B. Panda, J. Mater. Chem. (2012) DOI: 10. 1039/c0xx00000x.
[51] C. Wu, P. Yin, X. Zhu, C. O. Yang, Y. Xie, J. Phys. Chem. B 110 (2006)17806.
[52] Y. Zhang, Y. Chen, T. Wang, J. Zhou, Y. Zhao, Micropor. Mesopor. Mater. 114 (2008) 257.
[53] S. K. Das, M. Nandi, S. Giri, A. Bhaumik, Micropor. Mesopor. Mater. 117 (2009) 362-367.
[54] B. Lee, D. Lu, J. N. Kondo, K. Domen, J. Am. Chem. Soc. 124 (2002) 11256-11257.
[55] S. Banerjee, A. Santhanam, A. Dhathathreyan, P. M. Rao, Langmuir 19 (2003) 5522-5525.
[56] B. Ji, D. Chen, X. Jiao, Z. Zhao, Y. Jiao, Mater. Lett. 64 (2010) 1836-1838.
[57] L. Zhao, Y. Yu, L. Song, M. Ruan, X. Hu, A. Larbot, Appl. Catal. A: General 263 (2004) 171–177.
[58] M. Yada, H. Kitamura, M. Machida, T. Kijima, Inorg. Chem. 37 (1998) 6470-6475.
DOI: 10.1021/ic980147f
[59] Q. Huo, D. Margolese, U. Ciesla, P. Feng, T. Gier, P. Sieger, R. Leon, P. Petroff, F. Schüth, G. D. Stucky, Nature 368 (1994) 317.
DOI: 10.1038/368317a0
[60] M. Yada, H. Kitamura, A. Ichinose, M. Machida, T. Kijima, Angew. Chem., Int. Ed. 38 (1999) 3506.
[61] Y. S. Lin, C. L. Haynes, Chem. Mater. 21(2009) 3979.
[62] J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon, T. Hyeon, Angew. Chem. Int. Ed. 47 (2008) 8438.
[63] S. Banerjee, P. Hajra, A. Bhaumik, D. Chakravorty, Mater. Lett. 79 (2012) 65.
[64] S. Alam, C. Anand, R. Logudurai, V. V. Balasubramanian, K. Ariga, A. C. Bose, T. Mori, P. Srinivasu, A. Vinu, Micropor. Mesopor. Mater. 121 (2009) 178.
[65] Y. Du, S. Liu, Y. Ji, Y. Zhang, N. Xiao, F. Xiao, J. Magn. Magn. Mater. 320 (2008) (1932).
[66] X. Q. Wang, M. Chen, L. Li, D. F. Jin, H. X. Jin, H. L. Ge, Mater. Lett. 64 (2010) 708.
[67] S. L. Gai , P. P. Yang , C. X. Li , W. X. Wang , Y. L. Dai , N. Niu, J. Lin , Adv. Funct. Mater. 20 (2010) 1166.
[68] X. H. Guo, Y. H. Deng, D. Gu, R. C. Che, D. Y. Zhao, J. Mater. Chem. 19 (2009) 6706.
[69] Y. F. Zhu, T. Ikoma, N. Hanagata, S. Kaskel, Small 6 (2010) 471.
[70] Y. F. Zhu, E. Kockrick, T. Ikoma, N. Hanagata, S. Kaskel, Chem. Mater. 21 (2009) 2547.
[71] P. G. Wu, J. H. Zhu, Z. H. Xu, Adv. Func. Mater. 14 (2004) 345.
[72] Y. S. Lin, S. H. Wu, Y. Hung, Y. H. Chou, C. Chang, M. L. Lin, C. P. Tsai, C. Y. Mou, Chem. Mater. 18 (2006) 5170.
[73] F. Jiao, H. Frei, Angew. Chem. Int. Ed. 48 (2009) 1841.
[74] R. Wang, X. Liu, Y. He, Q. Yuan, X. Li, G. Lu, T. Zhang, Sens. Actuators B Chem. 145 (2010) 386.
[75] Y. Sun, G. Ji, M. Zheng, X. Chang, S. Li, Y. Zhang J. Mater. Chem. 20 (2010) 945.
[76] H. Kim, J. Cho, J. Mater. Chem. 18 (2008) 771.
[77] H.R. Emamian, A. Honarbakhsh-raouf, A. Ataie, A. Yourdkhani, J. Alloys Compd. 480 (2009) 681.
[78] Z. Zhang, F. Zuo, P. Feng, J. Mater. Chem. 20 (2010) 2206.
[79] W. H. Zhang, J. L. Shi, L. Z. Wang, D. S. Yan, Chem. Mater. 12 (2000) 1408.
[80] P. P. Yang, Z. W. Quan, Z. Y. Hou, C. X. Li, X. J. Kang, Z. Y. Cheng, J. Lin, Biomaterials 30 (2009) 4786.
[81] A. B. Fuertes, M. Sevilla, T. Valdes-Solis, P. Tartaj, Chem. Mater. 19 (2007) 5418.
[82] X. W. Lou, L. A. Archer, Z. Yang, Adv. Mater. 20 (2008) 3987.
[83] X. J. Wu, D. S. Xu, J. Am. Chem. Soc. 131 (2009) 2774.
[84] M. Kim, K. Sohn, H. B. Na, T. Hyeon, Nanoletters 2 (2002) 1383.
[85] L. Wang, T. Fei, J. Deng, Z. Lou, R. Wang, T. Zhang, J. Mater. Chem. (2012) DOI: 10. 1039/c2jm32520a.
[86] Y. Zhu, E. Kockrick, T Ikoma, N. Hanagata, S. Kaskel Chem. Mater. 21 (2009) 2547.
[87] J. Zhang, J. Ma, J. Jiang, X.S. Zhao J. Mater. Res. 25 (2010)1476.
[88] M. Arruebo, M. Galán, N. Navascués, C. Téllez, C. Marquina, M. R. Ibarra, J. Santamaría, Chem. Mater. 18 (2006)1911-(1919).
DOI: 10.1021/cm051646z
[89] P. Yang, Z. Quan, C. Li, X. Kang, H. Lian, J. Lin, Biomaterials 29 (2008) 4341–4347.
[90] P. Yang, Z. Quan, Z. Hou, C. Li, X. Kang, Z. Cheng, J. Lin, Biomaterials 30 (2009) 4786–4795.
[91] J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon, T. Hyeon, Angew. Chem. Int. Ed. 47 (2008) 8438 –8441.
[92] S. S. Huang , P. P. Yang , Z. Y. Cheng , C. X. Li , Y. Fan , D. Y. Kong, J. Lin, J. Phys. Chem. C 112 (2008) 7130.
[93] D. Castanotto, J. J. Rossi, Nature 457 (2009) 426.
[94] I. Slowing, J. L. Vivero-Escoto, C. W. Wu, V. S. Lin, Adv. Drug Deliv. Rev. 60 (2008) 1278.
[95] S. Gai, P. Yang, J. Hao, W. Wang, N. Niu, F. He, D. Wanga, J. Lin, Micropor. Mesopor. Mater. 131 (2010)128–135.
[96] J. Liu, W. Bu, S. Zhang, F. Chen, H. Xing, L. Pan, L. Zhou, W. Peng, J. Shi, Chem. Eur. J. 18 (2012) 233.
[97] Y. Shao, X. Tian, W. Hu, Y. Zhang, H. Liu, H. He, Y. Shen, F. Xie, L. Li, Biomaterials 33 (2012) 6438-6446.
[98] H. Wu, G. Liu, S. Zhang, J. Shi, L. Zhang, Y. Chen, F. Chena, H. Chena, J. Mater. Chem. 21 (2011) 3037.
[99] J. Kim, Y. Piao, N. Lee, Y. I. Park, I. H. Lee, J. H. Lee, S. R. Paik, T. Hyeon, Adv. Mater. 22 (2010) 57–60.
[100] Y. Chen, H. Chen, D. Zeng, Y. Tian, F. Chen, J. Feng, J. Shi, ACSNANAO 4 (2010) 6001-6013.
[101] F. U. Hart, M. H. Hart, Nat. Struct. Mol. Biol. 16 (2009) 574.
[102] L. Wang, J. Bai, X. Bo, X. Zhang, L. Guo, Talanta 83 (2011) 1386–1391.
[103] X. Jiang, Y. Wu, X. Mao, X. Cui, L. Zhu, Sens. Actuators B Chem. 153 (2011) 158–163.
[104] J. Li, D. Kuang, Y. Feng, F. Zhang, M. Liu, Microchim Acta 176 (2012) 73–80.
[105] Z. Shao, B. Tian, J. Zhang Mater. Lett. 63 (2009)1705.
[106] Z. Bian, J. Zhu, S. Wang, Y. Cao, X. Qian, H. Li, J. Phys. Chem. C 112 (2008) 6258.
[107] M. Xue, L. Huang, J.Q. Wang, Y. Wang, L. Gao, J. H. Zhu, Z. G. Zou, Nanotechnology 19 (2008) 185604.
[108] N. Perkas, Y. Wang, Y. Koltypin, A. Gedanken, S. Chandrasekaran, Chem. Commun. (2001) 988.
[109] Q. Yuan, Y. Liu, L. L. Li, Z. X. Li, C. J. Fang, W. T. Duan, X. G. Li, C. H. Yan, Micropor. Mesopor. Mater. 124 (2009)169.
[110] Z. Zhu, X. Li, Q. Zhao, H. Li, Y. Shen, G. Chen, Chem. Eng. J. 165 (2010) 64.
[111] F. Jiao, H. Frei, Angew. Chem. Int. Ed. 48 (2009)1841.
[112] Y. Liu, H. Tsunoyama, T. Akita, T. Tsukuda, J. Phys. Chem. C 113 (2009)13457.
[113] K. Inumaru, M. Yasui, T. Kasahara, K. Yamaguchi, A. Yasuda, S. Yamanaka, J. Mater. Chem. 21 12117 (2011).
[114] D. Kubička, P. Šimáček, N. Žilkova, Top Catal 52 (2009)161.
[115] Q. Qia, T. Zhanga, X. Zheng, L. Wanc, Sens. Actuators B Chem. 135 (2008) 255.
[116] J. Tu, R. Wang,W. Geng, X. Lai, T. Zhang, Nan Li, N. Yuec, X. Li, Sens. Actuators Chem. 136 (2009) 392.
[117] Q. Yuan, N. Li, J. Tua, X. Li, R. Wang, T. Zhang, C. Shao, Sens. Actuators B Chem. 149 (2010) 413.
[118] B. Yuliarto, H. S. Zhou,T. Yamada, I. Honma, Y. Katsumura, M. Ichihara, Anal. Chem. 76 (2004) 6719.
[119] G. Li, S. Kawi, Sens. Actuators B Chem. 59 (1999)1.
[120] J. Yang, K. Hidajat, S. Kawi, J. Mater. Chem. 19 (2009) 292.
[121] Y. Feng, R. Yao, L. Zhang, Mater. Chem. Phys. 89 (2005) 311.
[122] D. Lu, J. Lei, Z. Tian, L. Wang, J. Zhang, Dyes and Pigments 94 (2012) 239.
[123] T.W. Sung, Y. L. Lo, Sens. Actuators B Chem. 165 (2012) 119.
[124] T. Balaji, S. A. El-Safty, H. Matsunaga, T. Hanaoka, F. Mizukami, Angew. Chem. Int. Ed. 45 (2006) 7202.
[125] K. Kledzik, M. Orłowska, D. Patralska, M. Gwiazda, J. Jezierska, S. Pikus, R. Ostaszewski, A.M. Kłonkowski, Appl. Surf. Sci. 254 (2007) 441.
[126] Z. Li, N. Liu, X. Wang, C. Wang, Y. Qi, L. Yin, J. Mater. Chem. (2012) DOI: 10. 1039/c2jm33195k.
[127] G. Wang, H. Liu, J. Liu, S. Qiao, G. M. Lu, P. Munroe, H. Ahn, Adv. Mater. 22 (2010) 4944.
[128] Y. Zhou, Y. Kim, C. Jo, J, Lee, C.W. Lee, S. Yoon, Chem. Commun. 47 4(2011) 944.
[129] M. Y. Chenga, B. J. Hwanga, J. Power Sources 195 (2010) 4977.
[130] B. Sun, H. Liu, P. Munroe, H. Ahn and G. Wang, Nano Res. (2012)DOI 10. 1007/s12274-012-0231-4.
[131] S. Ko, J. I. Lee, H. S. Yang, S. Park and U. Jeong, Adv. Mater. (2012) DOI: 10. 1002/adma. 201201821.
[132] W. Suna, X. Suna, T. Penga, Y. Liua, H. Zhua, S. Guoa, X. Z. Zhao, J. Power Sources 201 (2012) 402.
[133] E. Ramasamy, C. Jo, A. Anthonysamy, I. Jeong, J. K. Kim, J. Lee, Chem. Mater. 24 (2012)1575.
[134] Y. Jo, J. Y. Cheon, J. Yu, H. Y. Jeong, C. H. Han, Y. Jun and S. H. Joo, Chem. Commun. (2012) DOI: 10. 1039/c2cc30923h.
[135] Y. Itzhaik, O. Niitsoo, M. Page, Gary Hodes, J. Phys. Chem. C 113 (2009) 4255.