[1]
W.J.M. Naber, S. Faez, W.G. van der Wiel, Organic spintronics. J. Phys. D-Appl. Phys. 40 (2007) R205-R228.
DOI: 10.1088/0022-3727/40/12/r01
Google Scholar
[2]
A.R. Rocha, V.M. Garcia-Suarez, S.W. Bailey, C.J. Lambert, J. Ferrer, S. Sanvito, Towards molecular spintronics. Nat. Mater. 4 (2005) 335-339.
DOI: 10.1038/nmat1349
Google Scholar
[3]
P. Tyagi, Multilayer edge molecular electronics devices: a review. J. Mater. Chem. 21 (2011) 4733-4742.
Google Scholar
[4]
G.X. Miao, M. Munzenberg, J.S. Moodera, Tunneling path toward spintronics. Rep. Prog. Phys. 74 (2011) 036501.
DOI: 10.1088/0034-4885/74/3/036501
Google Scholar
[5]
S. Parkin, Spin-polarized current in spin valves and magnetic tunnel junctions. MRS Bull. 31 (2006) 389-394.
DOI: 10.1557/mrs2006.99
Google Scholar
[6]
J.S. Moodera, J. Nassar, G. Mathon, Spin-tunneling in ferromagnetic junctions. Ann. Rev. Mater. Sci. 29 (1999) 381-432.
DOI: 10.1146/annurev.matsci.29.1.381
Google Scholar
[7]
A.N. Pasupathy, R.C. Bialczak, J. Martinek, J.E. Grose, L.A.K. Donev, P.L. McEuen, D.C. Ralph, The Kondo effect in the presence of ferromagnetism. Science 306 (2004) 86-89.
DOI: 10.1126/science.1102068
Google Scholar
[8]
J.J.I. Wong, L. Ramirez, A.G. Swartz, A. Hoff, W. Han, Y. Li, R.K. Kawakami, Tailoring interlayer exchange coupling of ferromagnetic films across MgO with Fe nanoclusters. Phys. Rev. B 81 (2010) 094406.
DOI: 10.1103/physrevb.81.094406
Google Scholar
[9]
M. Verdaguer, Rational synthesis of molecular magnetic materials: a tribute to Olivier Kahn. Polyhedron 20 (2001) 1115-1128.
DOI: 10.1016/s0277-5387(01)00700-8
Google Scholar
[10]
M. Zwolak, M. Di Ventra, DNA spintronics. App. Phys. Lett. 81 (2002) 925-927.
DOI: 10.1063/1.1496504
Google Scholar
[11]
P. Tyagi, Molecular Spin Devices: Current Understanding and New Territories. Nano 4 (2009) 325-338.
DOI: 10.1142/s1793292009001903
Google Scholar
[12]
M. Jurow, A.E. Schuckman, J.D. Batteas, C.M. Drain, Porphyrins as molecular electronic components of functional devices. Coord. Chem. Rev. 254 (2010) 2297-2310.
DOI: 10.1016/j.ccr.2010.05.014
Google Scholar
[13]
M. Shatruk, C. Avendano, K.R. Dunbar, Cyanide-Bridged Complexes of Transition Metals: A Molecular Magnetism Perspective. Prog. Inorg. Chem. 56 (2009) 155-334.
DOI: 10.1002/9780470440124.ch3
Google Scholar
[14]
J.R. Petta, S.K. Slater, D.C. Ralph, Spin-dependent transport in molecular tunnel junctions. Phys. Rev. Lett. 93 (2004) 136601.
DOI: 10.1103/physrevlett.93.136601
Google Scholar
[15]
W. Chen, X.Q. Liu, Z.K. Tan, K.K. Likharev, J.E. Lukens, A. Mayr, Fabrication and characterization of novel cross point structures for molecular electronic integrated circuits. J. Vac. Sci. Technol. B 24 (2006) 3217-3220.
DOI: 10.1116/1.2366618
Google Scholar
[16]
G.J. Ashwell, P. Wierzchowiec, C.J. Bartlett, P.D. Buckle, Molecular electronics: connection across nano-sized electrode gaps. Chem. Commun. (2007) 1254-1256.
DOI: 10.1039/b615538c
Google Scholar
[17]
P. Tyagi, D.F. Li, S.M. Holmes, B.J. Hinds, Molecular electrodes at the exposed edge of metal/insulator/metal trilayer structures. J. Am. Chem. Soc. 129 (2007) 4929-4938.
DOI: 10.1021/ja065789d
Google Scholar
[18]
B. Hu. (2011), PhD Thesis: Fabrication and Study of Molecular Devices and Photovoltaic Devices by Metal/Dielectrc/Metal Structures, University of Kentucky (http: /uknowledge. uky. edu/cgi/viewcontent. cgi?article=1224&context=gradschool_diss).
Google Scholar
[19]
S.W. Howell, S.M. Dirk, K. Childs, H. Pang, M. Blain, R.J. Simonson, J.M. Tour, D.R. Wheeler, Mass-fabricated one-dimensional silicon nanogaps for hybrid organic/nanoparticle arrays. Nanotechnology 16 (2005) 754-758.
DOI: 10.1088/0957-4484/16/6/022
Google Scholar
[20]
S.M. Luber, S. Strobel, H.P. Tranitz, W. Wegscheider, D. Schuh, M. Tornow, Nanometre spaced electrodes on a cleaved AlGaAs surface. Nanotechnology 16 (2005) 1182-1185.
DOI: 10.1088/0957-4484/16/8/034
Google Scholar
[21]
D.F. Li, S. Parkin, G.B. Wang, G.T. Yee, R. Clerac, W. Wernsdorfer, S.M. Holmes, An S=6 cyanide-bridged octanuclear (Fe4Ni4II)-Ni-III complex that exhibits slow relaxation of the magnetization. J. Am. Chem. Soc. 128 (2006) 4214-4215.
DOI: 10.1021/ja058626i
Google Scholar
[22]
D.F. Li, C. Ruschman, R. Clerac, S.M. Holmes, Ancillary Ligand Functionalization of Cyanide-Bridged S = 6 FeIII4NiII4 Complexes for Molecule-Based Electronics. Inorg. Chem. 45 (2006) 7569.
DOI: 10.1021/ic060695q.s002
Google Scholar
[23]
L. Cheng, J.P. Yang, Y.X. Yao, D.W. Price, S.M. Dirk, J.M. Tour, Comparative study of electrochemically directed assembly versus conventional self-assembly of thioacetyl-terminated oligo(phenylene ethynlyene)s on gold and platinum surface. Langmuir 20 (2004).
DOI: 10.1021/la036254q
Google Scholar
[24]
K. Park, H.S. M., Exchange coupling and contribution of induced orbital angular momentum of low-spin Fe3+ ions to magnetic anisotropy in cyanide-bridged Fe2M2 molecular magnets: Spin-polarized density-functional calculations. Phys. Rev. B 74 (2006).
DOI: 10.1103/physrevb.74.224440
Google Scholar
[25]
C.E. Inman, S.M. Reed, J.E. Hutchison, In situ deprotection and assembly of S-tritylalkanethiols on gold yields monolayers comparable to those prepared directly from alkanethiols, Langmuir 20 (2004) 9144-9150.
DOI: 10.1021/la049627b
Google Scholar
[26]
P. Tyagi, B.J. Hinds, Mechanism of Ultrathin Tunnel Barrier Failure Due to Mechanical Stress Induced Nano-Sized Hillocks and Voids. J. Vac. Sci. Technol. B 28 (2010) 517-521.
DOI: 10.1116/1.3406143
Google Scholar
[27]
J. Faure-Vincent, C. Tiusan, C. Bellouard, E. Popova, M. Hehn, F. Montaigne, A. Schuhl, Interlayer magnetic coupling interactions of two ferromagnetic layers by spin polarized tunneling Phys. Rev. Lett. 89 (2002) 107206.
DOI: 10.1103/physrevlett.89.189902
Google Scholar
[28]
S.O. Demokritov, Biquadratic interlayer coupling in layered magnetic systems. J. Phys. D-Appl. Phys. 31 (1998) 925-941.
DOI: 10.1088/0022-3727/31/8/003
Google Scholar
[29]
M.J.T. Michael Ziese, Spin Electronics (Lecture Notes in Physics), Springer Verlag, (2001).
Google Scholar
[30]
R.R. Gareev, L.L. Pohimann, S. Stein, D.E. Burgler, P.A. Grunberg, M. Siegel, Tunneling in epitaxial Fe/Si/Fe structures with strong antiferromagnetic interlayer coupling. J. Appl. Phys. 93 (2003) 8038.
DOI: 10.1063/1.1543989
Google Scholar
[31]
M.Y. Zhuravlev, E.Y. Tsymbal, A.V. Vedyayev, Impurity-assisted interlayer exchange coupling across a tunnel barrier. Phys. Rev. Lett. 94 (2005) 026806.
DOI: 10.1103/physrevlett.94.026806
Google Scholar
[32]
C. Joachim, M.A. Ratner, Molecular electronics: Some views on transport junctions and beyond. Proc. Nat. Acad. Sci. USA 102 (2005) 8801-8808.
DOI: 10.1073/pnas.0500075102
Google Scholar
[33]
J. Martinek, Y. Utsumi, H. Imamura, J. Barnas, S. Maekawa, J. Konig, G. Schon, Kondo effect in quantum dots coupled to ferromagnetic leads. Phys. Rev. Lett. 91 (2003).
DOI: 10.1103/physrevlett.91.127203
Google Scholar
[34]
C. Kittel, Intorduction to Solid State Physics, John Wiley & Sons, Inc, New York, (1996).
Google Scholar
[35]
P. Tyagi, Molecule induced strong exchange coupling between ferromagnetic electrodes of a magnetic tunnel junction. arXiv: 1110. 0885v1 [cond-mat. mtrl-sci](2011).
Google Scholar
[36]
K.H.J. Buschow, Handbook of Magnetic Materials, Elsevier, (2006).
Google Scholar
[37]
P. Tyagi, Molecular electronics and spintronics devices produced by the plasma oxidation of photolithographically defined metal electrode App. Phys. A: Mat. Sci. & Proc. 108 (2012) 529-536.
DOI: 10.1007/s00339-012-7022-3
Google Scholar
[38]
A. Layadi, Ferromagnetic resonance modes in coupled layers with cubic magnetocrystalline anisotropy. J. App. Phys. 83 (1998) 3738-3743.
DOI: 10.1063/1.366600
Google Scholar
[39]
A. Layadi, Ferromagnetic resonance modes in single and coupled layeres with oblique anisotropy axis. Phys. Rev. B 63 (2001) 174410.
DOI: 10.1103/physrevb.63.174410
Google Scholar
[40]
J. Linder, K. Baberschke, Ferromagnetic resonance in coupled ultrathin films. J. Phys. -Condens. Matter 15 (2003) S465-S478.
DOI: 10.1088/0953-8984/15/5/303
Google Scholar
[41]
P. Tyagi. (2008), PhD Thesis: Fabrication and Characterization of Molecular Spintronics Devices, University of Kentucky (http: /archive. uky. edu/handle/10225/878).
Google Scholar
[42]
D. Chylarecka, T.K. Kim, K. Tarafder, K. Muller, K. Godel, I. Czekaj, C. Wackerlin, M. Cinchetti, M.E. Ali, C. Piamonteze, F. Schmitt, J.P. Wustenberg, C. Ziegler, F. Nolting, M. Aeschlimann, P.M. Oppeneer, N. Ballav, T.A. Jung, Indirect Magnetic Coupling of Manganese Porphyrin to a Ferromagnetic Cobalt Substrate. J. Phys. Chem. C 115 (2011).
DOI: 10.1021/jp106822s
Google Scholar
[43]
Y. Selzer, D.L. Allara, Single-molecule electrical junctions. Ann. Rev. Phys. Chem. 57 (2006) 593-623.
DOI: 10.1146/annurev.physchem.57.032905.104709
Google Scholar
[44]
J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abruna, P.L. McEuen, D.C. Ralph, Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417 (2002) 722-725.
DOI: 10.1038/nature00791
Google Scholar
[45]
P. Seneor, A. Bernand-Mantel, F. Petroff, Nanospintronics: when spintronics meets single electron physics. J. Phys. -Cond. Mat. 19 (2007) 206801.
DOI: 10.1088/0953-8984/19/16/165222
Google Scholar
[46]
P. Tyagi, Fabrication of multilayer edge molecular electronics and spintronics devices. arXiv: 1110. 2084v1 [cond-mat. mtrl-sci](2011).
Google Scholar
[47]
P. Tyagi, Room temeperature current suppression on multilayer edge molecular spintronics device. arXiv: 1111. 6352v1 [cond-mat. mes-hall](2011).
Google Scholar
[48]
P. Tyagi, Photovoltaic Effect on Molecule Coupled Ferromagnetic Films of a Magnetic Tunnel Junction. arXiv: 1112. 1879v1 [cond-mat. mes-hall](2011).
Google Scholar
[49]
L. Bogani, W. Wernsdorfer, Molecular spintronics using single-molecule magnets. Nat. Mater. 7 (2008) 179-186.
DOI: 10.1038/nmat2133
Google Scholar
[50]
J. Lehmann, A. Gaita-Arino, E. Coronado, D. Loss, Quantum computing with molecular spin systems. J. Mater. Chem. 19 (2009) 1672-1677.
DOI: 10.1039/b810634g
Google Scholar
[51]
E. Coronado, A.J. Epsetin, Molecular spintronics and quantum computing. J. Mater. Chem. 19 (2009) 1670-1671.
Google Scholar