Molecule Induced Strong Coupling between Ferromagnetic Electrodes of a Molecular Spintronics Device

Article Preview

Abstract:

Utilizing molecules for tailoring the exchange coupling strength between ferromagnetic electrodes can produce novel metamaterials and molecular spintronics devices (MSD). A practical way to produce such MSD is to connect the molecular channels to the electrodes of a magnetic tunnel junction (MTJ). This paper discusses the dramatic changes in the properties of MTJ testbed of a MSD due to molecular device elements with a net spin state. When organometallic molecular complexes (OMCs) were bridged across the insulator along the exposed side edges, a MTJ testbed exhibited entirely different magnetic response in magnetization, ferromagnetic resonance and magnetic force microscopy studies. OMCs only affected the ferromagnetic material when it was serving as the electrode of a tunnel junction. Molecule produced the strongest effect on the MTJ with electrodes of dissimilar magnetic hardness. This study encourages the validation of this work and exploration of similar observations with the other combinations MTJs and molecules, like single molecular magnet, porphyrin, and molecular clusters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

32-54

Citation:

Online since:

December 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.J.M. Naber, S. Faez, W.G. van der Wiel, Organic spintronics. J. Phys. D-Appl. Phys. 40 (2007) R205-R228.

DOI: 10.1088/0022-3727/40/12/r01

Google Scholar

[2] A.R. Rocha, V.M. Garcia-Suarez, S.W. Bailey, C.J. Lambert, J. Ferrer, S. Sanvito, Towards molecular spintronics. Nat. Mater. 4 (2005) 335-339.

DOI: 10.1038/nmat1349

Google Scholar

[3] P. Tyagi, Multilayer edge molecular electronics devices: a review. J. Mater. Chem. 21 (2011) 4733-4742.

Google Scholar

[4] G.X. Miao, M. Munzenberg, J.S. Moodera, Tunneling path toward spintronics. Rep. Prog. Phys. 74 (2011) 036501.

DOI: 10.1088/0034-4885/74/3/036501

Google Scholar

[5] S. Parkin, Spin-polarized current in spin valves and magnetic tunnel junctions. MRS Bull. 31 (2006) 389-394.

DOI: 10.1557/mrs2006.99

Google Scholar

[6] J.S. Moodera, J. Nassar, G. Mathon, Spin-tunneling in ferromagnetic junctions. Ann. Rev. Mater. Sci. 29 (1999) 381-432.

DOI: 10.1146/annurev.matsci.29.1.381

Google Scholar

[7] A.N. Pasupathy, R.C. Bialczak, J. Martinek, J.E. Grose, L.A.K. Donev, P.L. McEuen, D.C. Ralph, The Kondo effect in the presence of ferromagnetism. Science 306 (2004) 86-89.

DOI: 10.1126/science.1102068

Google Scholar

[8] J.J.I. Wong, L. Ramirez, A.G. Swartz, A. Hoff, W. Han, Y. Li, R.K. Kawakami, Tailoring interlayer exchange coupling of ferromagnetic films across MgO with Fe nanoclusters. Phys. Rev. B 81 (2010) 094406.

DOI: 10.1103/physrevb.81.094406

Google Scholar

[9] M. Verdaguer, Rational synthesis of molecular magnetic materials: a tribute to Olivier Kahn. Polyhedron 20 (2001) 1115-1128.

DOI: 10.1016/s0277-5387(01)00700-8

Google Scholar

[10] M. Zwolak, M. Di Ventra, DNA spintronics. App. Phys. Lett. 81 (2002) 925-927.

DOI: 10.1063/1.1496504

Google Scholar

[11] P. Tyagi, Molecular Spin Devices: Current Understanding and New Territories. Nano 4 (2009) 325-338.

DOI: 10.1142/s1793292009001903

Google Scholar

[12] M. Jurow, A.E. Schuckman, J.D. Batteas, C.M. Drain, Porphyrins as molecular electronic components of functional devices. Coord. Chem. Rev. 254 (2010) 2297-2310.

DOI: 10.1016/j.ccr.2010.05.014

Google Scholar

[13] M. Shatruk, C. Avendano, K.R. Dunbar, Cyanide-Bridged Complexes of Transition Metals: A Molecular Magnetism Perspective. Prog. Inorg. Chem. 56 (2009) 155-334.

DOI: 10.1002/9780470440124.ch3

Google Scholar

[14] J.R. Petta, S.K. Slater, D.C. Ralph, Spin-dependent transport in molecular tunnel junctions. Phys. Rev. Lett. 93 (2004) 136601.

DOI: 10.1103/physrevlett.93.136601

Google Scholar

[15] W. Chen, X.Q. Liu, Z.K. Tan, K.K. Likharev, J.E. Lukens, A. Mayr, Fabrication and characterization of novel cross point structures for molecular electronic integrated circuits. J. Vac. Sci. Technol. B 24 (2006) 3217-3220.

DOI: 10.1116/1.2366618

Google Scholar

[16] G.J. Ashwell, P. Wierzchowiec, C.J. Bartlett, P.D. Buckle, Molecular electronics: connection across nano-sized electrode gaps. Chem. Commun. (2007) 1254-1256.

DOI: 10.1039/b615538c

Google Scholar

[17] P. Tyagi, D.F. Li, S.M. Holmes, B.J. Hinds, Molecular electrodes at the exposed edge of metal/insulator/metal trilayer structures. J. Am. Chem. Soc. 129 (2007) 4929-4938.

DOI: 10.1021/ja065789d

Google Scholar

[18] B. Hu. (2011), PhD Thesis: Fabrication and Study of Molecular Devices and Photovoltaic Devices by Metal/Dielectrc/Metal Structures, University of Kentucky (http: /uknowledge. uky. edu/cgi/viewcontent. cgi?article=1224&context=gradschool_diss).

Google Scholar

[19] S.W. Howell, S.M. Dirk, K. Childs, H. Pang, M. Blain, R.J. Simonson, J.M. Tour, D.R. Wheeler, Mass-fabricated one-dimensional silicon nanogaps for hybrid organic/nanoparticle arrays. Nanotechnology 16 (2005) 754-758.

DOI: 10.1088/0957-4484/16/6/022

Google Scholar

[20] S.M. Luber, S. Strobel, H.P. Tranitz, W. Wegscheider, D. Schuh, M. Tornow, Nanometre spaced electrodes on a cleaved AlGaAs surface. Nanotechnology 16 (2005) 1182-1185.

DOI: 10.1088/0957-4484/16/8/034

Google Scholar

[21] D.F. Li, S. Parkin, G.B. Wang, G.T. Yee, R. Clerac, W. Wernsdorfer, S.M. Holmes, An S=6 cyanide-bridged octanuclear (Fe4Ni4II)-Ni-III complex that exhibits slow relaxation of the magnetization. J. Am. Chem. Soc. 128 (2006) 4214-4215.

DOI: 10.1021/ja058626i

Google Scholar

[22] D.F. Li, C. Ruschman, R. Clerac, S.M. Holmes, Ancillary Ligand Functionalization of Cyanide-Bridged S = 6 FeIII4NiII4 Complexes for Molecule-Based Electronics. Inorg. Chem. 45 (2006) 7569.

DOI: 10.1021/ic060695q.s002

Google Scholar

[23] L. Cheng, J.P. Yang, Y.X. Yao, D.W. Price, S.M. Dirk, J.M. Tour, Comparative study of electrochemically directed assembly versus conventional self-assembly of thioacetyl-terminated oligo(phenylene ethynlyene)s on gold and platinum surface. Langmuir 20 (2004).

DOI: 10.1021/la036254q

Google Scholar

[24] K. Park, H.S. M., Exchange coupling and contribution of induced orbital angular momentum of low-spin Fe3+ ions to magnetic anisotropy in cyanide-bridged Fe2M2 molecular magnets: Spin-polarized density-functional calculations. Phys. Rev. B 74 (2006).

DOI: 10.1103/physrevb.74.224440

Google Scholar

[25] C.E. Inman, S.M. Reed, J.E. Hutchison, In situ deprotection and assembly of S-tritylalkanethiols on gold yields monolayers comparable to those prepared directly from alkanethiols, Langmuir 20 (2004) 9144-9150.

DOI: 10.1021/la049627b

Google Scholar

[26] P. Tyagi, B.J. Hinds, Mechanism of Ultrathin Tunnel Barrier Failure Due to Mechanical Stress Induced Nano-Sized Hillocks and Voids. J. Vac. Sci. Technol. B 28 (2010) 517-521.

DOI: 10.1116/1.3406143

Google Scholar

[27] J. Faure-Vincent, C. Tiusan, C. Bellouard, E. Popova, M. Hehn, F. Montaigne, A. Schuhl, Interlayer magnetic coupling interactions of two ferromagnetic layers by spin polarized tunneling Phys. Rev. Lett. 89 (2002) 107206.

DOI: 10.1103/physrevlett.89.189902

Google Scholar

[28] S.O. Demokritov, Biquadratic interlayer coupling in layered magnetic systems. J. Phys. D-Appl. Phys. 31 (1998) 925-941.

DOI: 10.1088/0022-3727/31/8/003

Google Scholar

[29] M.J.T. Michael Ziese, Spin Electronics (Lecture Notes in Physics), Springer Verlag, (2001).

Google Scholar

[30] R.R. Gareev, L.L. Pohimann, S. Stein, D.E. Burgler, P.A. Grunberg, M. Siegel, Tunneling in epitaxial Fe/Si/Fe structures with strong antiferromagnetic interlayer coupling. J. Appl. Phys. 93 (2003) 8038.

DOI: 10.1063/1.1543989

Google Scholar

[31] M.Y. Zhuravlev, E.Y. Tsymbal, A.V. Vedyayev, Impurity-assisted interlayer exchange coupling across a tunnel barrier. Phys. Rev. Lett. 94 (2005) 026806.

DOI: 10.1103/physrevlett.94.026806

Google Scholar

[32] C. Joachim, M.A. Ratner, Molecular electronics: Some views on transport junctions and beyond. Proc. Nat. Acad. Sci. USA 102 (2005) 8801-8808.

DOI: 10.1073/pnas.0500075102

Google Scholar

[33] J. Martinek, Y. Utsumi, H. Imamura, J. Barnas, S. Maekawa, J. Konig, G. Schon, Kondo effect in quantum dots coupled to ferromagnetic leads. Phys. Rev. Lett. 91 (2003).

DOI: 10.1103/physrevlett.91.127203

Google Scholar

[34] C. Kittel, Intorduction to Solid State Physics, John Wiley & Sons, Inc, New York, (1996).

Google Scholar

[35] P. Tyagi, Molecule induced strong exchange coupling between ferromagnetic electrodes of a magnetic tunnel junction. arXiv: 1110. 0885v1 [cond-mat. mtrl-sci](2011).

Google Scholar

[36] K.H.J. Buschow, Handbook of Magnetic Materials, Elsevier, (2006).

Google Scholar

[37] P. Tyagi, Molecular electronics and spintronics devices produced by the plasma oxidation of photolithographically defined metal electrode App. Phys. A: Mat. Sci. & Proc. 108 (2012) 529-536.

DOI: 10.1007/s00339-012-7022-3

Google Scholar

[38] A. Layadi, Ferromagnetic resonance modes in coupled layers with cubic magnetocrystalline anisotropy. J. App. Phys. 83 (1998) 3738-3743.

DOI: 10.1063/1.366600

Google Scholar

[39] A. Layadi, Ferromagnetic resonance modes in single and coupled layeres with oblique anisotropy axis. Phys. Rev. B 63 (2001) 174410.

DOI: 10.1103/physrevb.63.174410

Google Scholar

[40] J. Linder, K. Baberschke, Ferromagnetic resonance in coupled ultrathin films. J. Phys. -Condens. Matter 15 (2003) S465-S478.

DOI: 10.1088/0953-8984/15/5/303

Google Scholar

[41] P. Tyagi. (2008), PhD Thesis: Fabrication and Characterization of Molecular Spintronics Devices, University of Kentucky (http: /archive. uky. edu/handle/10225/878).

Google Scholar

[42] D. Chylarecka, T.K. Kim, K. Tarafder, K. Muller, K. Godel, I. Czekaj, C. Wackerlin, M. Cinchetti, M.E. Ali, C. Piamonteze, F. Schmitt, J.P. Wustenberg, C. Ziegler, F. Nolting, M. Aeschlimann, P.M. Oppeneer, N. Ballav, T.A. Jung, Indirect Magnetic Coupling of Manganese Porphyrin to a Ferromagnetic Cobalt Substrate. J. Phys. Chem. C 115 (2011).

DOI: 10.1021/jp106822s

Google Scholar

[43] Y. Selzer, D.L. Allara, Single-molecule electrical junctions. Ann. Rev. Phys. Chem. 57 (2006) 593-623.

DOI: 10.1146/annurev.physchem.57.032905.104709

Google Scholar

[44] J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abruna, P.L. McEuen, D.C. Ralph, Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417 (2002) 722-725.

DOI: 10.1038/nature00791

Google Scholar

[45] P. Seneor, A. Bernand-Mantel, F. Petroff, Nanospintronics: when spintronics meets single electron physics. J. Phys. -Cond. Mat. 19 (2007) 206801.

DOI: 10.1088/0953-8984/19/16/165222

Google Scholar

[46] P. Tyagi, Fabrication of multilayer edge molecular electronics and spintronics devices. arXiv: 1110. 2084v1 [cond-mat. mtrl-sci](2011).

Google Scholar

[47] P. Tyagi, Room temeperature current suppression on multilayer edge molecular spintronics device. arXiv: 1111. 6352v1 [cond-mat. mes-hall](2011).

Google Scholar

[48] P. Tyagi, Photovoltaic Effect on Molecule Coupled Ferromagnetic Films of a Magnetic Tunnel Junction. arXiv: 1112. 1879v1 [cond-mat. mes-hall](2011).

Google Scholar

[49] L. Bogani, W. Wernsdorfer, Molecular spintronics using single-molecule magnets. Nat. Mater. 7 (2008) 179-186.

DOI: 10.1038/nmat2133

Google Scholar

[50] J. Lehmann, A. Gaita-Arino, E. Coronado, D. Loss, Quantum computing with molecular spin systems. J. Mater. Chem. 19 (2009) 1672-1677.

DOI: 10.1039/b810634g

Google Scholar

[51] E. Coronado, A.J. Epsetin, Molecular spintronics and quantum computing. J. Mater. Chem. 19 (2009) 1670-1671.

Google Scholar