[1]
L. Q. Chen, Phase-field models for microstructural evolution, Ann. Rev. Mat. Res., 32 (2002), 113-140.
Google Scholar
[2]
W. J. Boettinger, J. A. Warren, C. Beckermann, A. Karma, Phase-field simulation of solidification, Ann. Rev. Mat. Res., 32 (2002), 163-194.
DOI: 10.1146/annurev.matsci.32.101901.155803
Google Scholar
[3]
J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial energy, J. Chem. Phys., 28 (1958), 258-266.
Google Scholar
[4]
J. E. Hilliard, Spinodal decomposition, in: H. I. Aaronson (Ed. ), Phase transformations, American Society for Metals, Metals Park, Ohio, 1970, pp.497-560.
Google Scholar
[5]
W. C. Carter, J. E. Taylor, J. W. Cahn, Overview: Variational methods for microstructural-evolution theories, JOM, 49 (1997), 30-36.
DOI: 10.1007/s11837-997-0027-2
Google Scholar
[6]
C. Zener, Theory of growth of spherical precipitates from solid solution, J. Appl. Phys., 20 (1949), 950-953.
DOI: 10.1063/1.1698258
Google Scholar
[7]
F. C. Frank, Radially symmetric phase growth controlled by diffusion, Proc. Roy. Soc. Lond. A., 201 (1950), 586-599.
DOI: 10.1098/rspa.1950.0080
Google Scholar
[8]
R. Mukherjee, T. A. Abinandanan, M. P. Gururajan, Phase field study of precipitate growth: Effect of misfit strain and interface curvature, Acta Mat., 57 (2009), 3947-3954.
DOI: 10.1016/j.actamat.2009.04.056
Google Scholar
[9]
R. Mukherjee, T. A. Abinandanan, M. P. Gururajan, Precipitate growth with composition-dependent diffusivity: Comparison between theory and phase field simulations, Script. Mat., 62 (2010), 85-88.
DOI: 10.1016/j.scriptamat.2009.09.030
Google Scholar
[10]
F. S. Ham, Theory of diffusion-limited precipitation, J. Phys. Chem. Solids, 6 (1958), 335-351.
Google Scholar
[11]
F. S. Ham, Shape preserving solutions of the time-dependent diffusion equation, Quart. Appl. Math., 17 (1959), 137-145.
DOI: 10.1090/qam/108196
Google Scholar
[12]
G. Horvay, J. W. Cahn, Dendritic and spheroidal growth, Acta Met., 9 (1961), 695-705.
DOI: 10.1016/0001-6160(61)90008-6
Google Scholar
[13]
R. Mukherjee, Precipitate growth kinetics: a phase field study, M. Sc. Thesis (2005), Submitted to Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, INDIA.
Google Scholar
[14]
T. A. Abinandanan, F. Haider, An extended Cahn-Hilliard model for interfaces with cubic anisotropy, Phil. Mag. A, 81 (2001), 2457-2479.
DOI: 10.1080/01418610110038420
Google Scholar
[15]
A. Karma, W. J. Rappel, Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics, Phys. Rev. E., 53 (1996), R3017-R3020.
DOI: 10.1103/physreve.53.r3017
Google Scholar
[16]
J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. A., 241 (1957), 376-396.
DOI: 10.1098/rspa.1957.0133
Google Scholar
[17]
J. D. Eshelby, The elastic field outside an ellipsoidal inclusion, Proc. R. Soc. Lond. A., 252 (1959), 561-569.
DOI: 10.1098/rspa.1959.0173
Google Scholar
[18]
M. P. Gururajan, T. A. Abinandanan, Phase field study of precipitate rafting under a uniaxial stress, Acta Mat., 55 (2007), 5015-5026.
DOI: 10.1016/j.actamat.2007.05.021
Google Scholar
[19]
W. C. Johnson, Precipitate shape evolution under applied stress—thermodynamics and kinetics, Met. Mat. Trans. A, 18 (1987), 233-247.
DOI: 10.1007/bf02825704
Google Scholar
[20]
V. J. Laraia, W. C. Johnson, P. W. Voorhees, Growth of a coherent precipitate from supersaturated solution, J. Mat. Res., 3 (1988), 257-266.
DOI: 10.1557/jmr.1988.0257
Google Scholar
[21]
B. G. Chirranjeevi, T. A. Abinandanan , M. P. Gururajan, A phase field study of morphological instabilities in multilayer thin films, Acta Mat., 57 (2009), 1060-1067.
DOI: 10.1016/j.actamat.2008.10.051
Google Scholar