Phase Field Models as Computer Experiments: Growth Kinetics of Anisotropic Precipitates

Article Preview

Abstract:

Phase field models are widely used for the study of microstructures and their evolution. They can also be used as computer experiments. As computer experiments, they serve two important roles: (a) theoretical results which are hard to verify/validate experimentally can be verified/validated on the computer using phase field models; and, (b) when severe assumptions are made in a theory, they can be relaxed in the phase field model, and hence, results with wider reach can be obtained. In this paper, we discuss some such computer experiments in general, and the growth kinetics of precipitates in systems with tetragonal and cubic interfacial anisotropies in particular.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-12

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Q. Chen, Phase-field models for microstructural evolution, Ann. Rev. Mat. Res., 32 (2002), 113-140.

Google Scholar

[2] W. J. Boettinger, J. A. Warren, C. Beckermann, A. Karma, Phase-field simulation of solidification, Ann. Rev. Mat. Res., 32 (2002), 163-194.

DOI: 10.1146/annurev.matsci.32.101901.155803

Google Scholar

[3] J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial energy, J. Chem. Phys., 28 (1958), 258-266.

Google Scholar

[4] J. E. Hilliard, Spinodal decomposition, in: H. I. Aaronson (Ed. ), Phase transformations, American Society for Metals, Metals Park, Ohio, 1970, pp.497-560.

Google Scholar

[5] W. C. Carter, J. E. Taylor, J. W. Cahn, Overview: Variational methods for microstructural-evolution theories, JOM, 49 (1997), 30-36.

DOI: 10.1007/s11837-997-0027-2

Google Scholar

[6] C. Zener, Theory of growth of spherical precipitates from solid solution, J. Appl. Phys., 20 (1949), 950-953.

DOI: 10.1063/1.1698258

Google Scholar

[7] F. C. Frank, Radially symmetric phase growth controlled by diffusion, Proc. Roy. Soc. Lond. A., 201 (1950), 586-599.

DOI: 10.1098/rspa.1950.0080

Google Scholar

[8] R. Mukherjee, T. A. Abinandanan, M. P. Gururajan, Phase field study of precipitate growth: Effect of misfit strain and interface curvature, Acta Mat., 57 (2009), 3947-3954.

DOI: 10.1016/j.actamat.2009.04.056

Google Scholar

[9] R. Mukherjee, T. A. Abinandanan, M. P. Gururajan, Precipitate growth with composition-dependent diffusivity: Comparison between theory and phase field simulations, Script. Mat., 62 (2010), 85-88.

DOI: 10.1016/j.scriptamat.2009.09.030

Google Scholar

[10] F. S. Ham, Theory of diffusion-limited precipitation, J. Phys. Chem. Solids, 6 (1958), 335-351.

Google Scholar

[11] F. S. Ham, Shape preserving solutions of the time-dependent diffusion equation, Quart. Appl. Math., 17 (1959), 137-145.

DOI: 10.1090/qam/108196

Google Scholar

[12] G. Horvay, J. W. Cahn, Dendritic and spheroidal growth, Acta Met., 9 (1961), 695-705.

DOI: 10.1016/0001-6160(61)90008-6

Google Scholar

[13] R. Mukherjee, Precipitate growth kinetics: a phase field study, M. Sc. Thesis (2005), Submitted to Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, INDIA.

Google Scholar

[14] T. A. Abinandanan, F. Haider, An extended Cahn-Hilliard model for interfaces with cubic anisotropy, Phil. Mag. A, 81 (2001), 2457-2479.

DOI: 10.1080/01418610110038420

Google Scholar

[15] A. Karma, W. J. Rappel, Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics, Phys. Rev. E., 53 (1996), R3017-R3020.

DOI: 10.1103/physreve.53.r3017

Google Scholar

[16] J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. A., 241 (1957), 376-396.

DOI: 10.1098/rspa.1957.0133

Google Scholar

[17] J. D. Eshelby, The elastic field outside an ellipsoidal inclusion, Proc. R. Soc. Lond. A., 252 (1959), 561-569.

DOI: 10.1098/rspa.1959.0173

Google Scholar

[18] M. P. Gururajan, T. A. Abinandanan, Phase field study of precipitate rafting under a uniaxial stress, Acta Mat., 55 (2007), 5015-5026.

DOI: 10.1016/j.actamat.2007.05.021

Google Scholar

[19] W. C. Johnson, Precipitate shape evolution under applied stress—thermodynamics and kinetics, Met. Mat. Trans. A, 18 (1987), 233-247.

DOI: 10.1007/bf02825704

Google Scholar

[20] V. J. Laraia, W. C. Johnson, P. W. Voorhees, Growth of a coherent precipitate from supersaturated solution, J. Mat. Res., 3 (1988), 257-266.

DOI: 10.1557/jmr.1988.0257

Google Scholar

[21] B. G. Chirranjeevi, T. A. Abinandanan , M. P. Gururajan, A phase field study of morphological instabilities in multilayer thin films, Acta Mat., 57 (2009), 1060-1067.

DOI: 10.1016/j.actamat.2008.10.051

Google Scholar