Size and Solid Solubility in Electrodeposited Ag-Ni Nanoparticles

Article Preview

Abstract:

Owing to a large difference in atomic sizes and a positive enthalpy of mixing, Ag and Ni form an immiscible system. In the current work, we report on the electrodeposition of Ag-Ni nanoparticles with a solid solution structure. Effect of current on the relative changes in composition and sizes of solid solution nanoparticles is illustrated. It is shown that with increase in the deposition current, size of Ag-Ni nanoparticles decreases due to an increased nucleation rate. With decrease in size the extent of miscibility of Ni in Ag increases due to increased energetic contribution from the particle curvature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-26

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Weissmüller, P. Bunzel, G. Wilde, Two-Phase Equilibrium in Small Alloy Particles, Scripta Mater. 51(8) (2004) 813-818.

DOI: 10.1016/j.scriptamat.2004.06.025

Google Scholar

[2] J. Poh, C. Stah, K. Albe, Size-dependent phase diagrams of metallic alloys: A Monte Carlo simulation study on order–disorder transitions in Pt–Rh nanoparticles, Beilstein J. Nanotechnol. 3 (2012), 1-11.

DOI: 10.3762/bjnano.3.1

Google Scholar

[3] C. Srivastava, S. Chithra, K. D. Malviya, S. K. Sinha, K. Chattopadhyay, Size dependent microstructure for Ag–Ni nanoparticles, Acta Mater. 59 (2011) 6501-6509.

DOI: 10.1016/j.actamat.2011.07.022

Google Scholar

[4] Z. Peng, H. Yang, Ag–Pt alloy nanoparticles with the compositions in the miscibility gap, J Solid State Chem. 181(2008) 1546-1551.

DOI: 10.1016/j.jssc.2008.03.013

Google Scholar

[5] W. A. Jesser, C. T. Schamp, Nanoparticle semiconductor compositions in the miscibility gap, Phys. Status Solidi 5 (2008) 539-544.

DOI: 10.1002/pssc.200776825

Google Scholar

[6] J. Luo, M. M. Maye, V. Petkov, N. N. Kariuki, L. Wang, P. Njoki, D. Mott, Y. Lin, C.J. Zhong, Phase Properties of Carbon-Supported Gold−Platinum Nanoparticles with Different Bimetallic Compositions, Chem. Mater. 17(12) (2005) 3086-3091.

DOI: 10.1021/cm050052t

Google Scholar

[7] R. Elizabeth, E. Hileman , D. DeCicco , J. F. Bondi, R. E. Schaak, Aqueous room-temperature synthesis of Au–Rh, Au–Pt, Pt–Rh, and Pd–Rh alloy nanoparticles: fully tunable compositions within the miscibility gaps, J. Mater. Chem. 21 (2011).

DOI: 10.1039/c0jm03913f

Google Scholar

[8] R. E. Reed-Hill, Physical Metallurgy Principles, Litton Educational Publishing Inc., New York, USA. (1973).

Google Scholar

[9] M. Singleton, The Ag−Ni (Silver-Nickel) system, J. Phase Equilib. 8(2) (1987) 119 121.

Google Scholar

[10] E. Ma, Alloys created between immiscible elements, Prog. Mater. Sci. 50(4) (2005) 413-509.

Google Scholar

[11] H. Z. Guo, Y. Z. Chen, X. Y. Chen, X. Z. Chen, R. T. Wen, G. H. Yue, D. L. Peng, Facile synthesis of near-monodisperse Ag@Ni core–shell nanoparticles and their application for catalytic generation of hydrogen, Nanotechnology 22(19) (2011).

DOI: 10.1088/0957-4484/22/19/195604

Google Scholar

[12] C. C. Lee, D. H. Chen, Large-scale synthesis of Ni–Ag core–shell nanoparticles with magnetic, optical and anti-oxidation properties, Nanotechnology 17 (2006) 3094-3099.

DOI: 10.1088/0957-4484/17/13/002

Google Scholar

[13] B. M. Mundotiya, C. Srivastava, Ag-Ni Nanoparticles: Synthesis and Phase Stability Electrochem. Solid St. 15(5) (2012) K41-K44.

DOI: 10.1149/2.esl120008

Google Scholar

[14] Z. Zhang, T. M. Nenoff, J. Y. Huang, D. T. Berry, P. P. Provencio, Room Temperature Synthesis of Thermally Immiscible Ag−Ni Nanoalloys, J. Phys. Chem. C 113 (2009) 1155-1159.

DOI: 10.1021/jp8098413

Google Scholar

[15] A. Kumar, C. Damle, M. Sastry, Low temperature crystalline Ag–Ni alloy formation from silver and nickel nanoparticles entrapped in a fatty acid composite film, Appl. Phys. Lett. 79(2) (2001) 3314-3317.

DOI: 10.1063/1.1414298

Google Scholar

[16] L. B. Bicelli, B. Bozzini, C. Mele, L. D. Urzo, A Review of Nanostructural Aspects of Metal Electrodeposition, International J. Electrochem. Sci. 3 (2008) 356-408.

Google Scholar

[17] S. M. Hwang, J. E. Bonevich, J. J. Kim, T. P. Moffat, Electrodeposition of Pt100−xPbx Metastable Alloys and Intermetallics, J. Electrochem. Soc. 158(6) (2011) D307-D316.

DOI: 10.1149/1.3572049

Google Scholar

[18] A. L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Phys. Rev. 56 (1939) 978-982.

DOI: 10.1103/physrev.56.978

Google Scholar

[19] M. Paunovic, M. Schlesinger, Fundamentals of Electrochemical Deposition, Electrochemical Society Series, (1998).

Google Scholar

[20] G.T. Burstein, A Century of Tafel's Equation: 1905–2005, Corros. Sci. 47 (12) (2005) 2858-2870.

Google Scholar

[21] C. Srivastava, B. M. Mundotiya, Morphology Dependence of Ag-Ni Solid Solubility, Electrochem. Solid St. 15(2) (2012) K10-K15.

DOI: 10.1149/2.003202esl

Google Scholar

[22] D. A. Porter, K. E. Easterling, Phase Transformations in Metal and Alloys, Van Nostrand Reinhold Co. Ltd., Berkshire, England, (1981).

Google Scholar

[23] J. H. He, H. W. Sheng, E. Ma, The enthalpy state of amorphous alloys in an immiscible system, Appl. Phys. Lett. 78(10) (2001) 1343-1346.

DOI: 10.1063/1.1352040

Google Scholar