Dislocation Dynamics Simulations

Article Preview

Abstract:

Dislocation Dynamics (DD) simulations are used to study the evolution of a pre-specified dislocation structure under applied stresses and imposed boundary conditions. These simulations can handle realistic dislocation densities ranging from 1010 to 1014 m-2, and hence can be used to model plastic deformation and strain hardening in metals. In this paper we introduce the basic concepts of DD simulations and then present results from simulations in thin copper films and in bulk zirconium. In both cases, the effect of orientation on deformation behaviour is investigated. For the thin film simulations, rigid boundary conditions are used at film-substrate and film-passivation interfaces leading to dislocation accumulation, while periodic boundaries are used for bulk grains of Zr. We show that there is a clear correlation between strain hardening rate and the rate of increase of dislocation density.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-20

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Pant, K.W. Schwarz, S.P. Baker, Dislocation interactions in thin films, Acta Mater 51 (2003) 3243-3258.

DOI: 10.1016/s1359-6454(03)00156-3

Google Scholar

[2] L. Nicola, E. Van der Giessen, A. Needleman, Dislocation interactions in thin films, J. Appl Phys. 93(10) (2003) 5920-5927.

DOI: 10.1063/1.1566471

Google Scholar

[3] J. Senger, D. Weygand, P. Gumbsch, O. Kraft, Discrete dislocation simulations of the plasticity of micropillars under uniaxial loading, Scripta Mater. 58 (2008) 587-590.

DOI: 10.1016/j.scriptamat.2007.11.031

Google Scholar

[4] G. Monnet, S. Naamane, B. Devincre, Orowan strengthening at low temperatures in bcc materials studied by dislocation dynamics simulations, Acta Mater. 59 (2011) 451-461.

DOI: 10.1016/j.actamat.2010.09.039

Google Scholar

[5] M.O. Peach, J.S. Koehler, The Forces Exerted on Dislocations and the Stress Fields Produced by Them, Physical Review 80 (1950) 436-439.

DOI: 10.1103/physrev.80.436

Google Scholar

[6] L.P. Kubin, Y. Estrin, G. Canova, in: D. Walgraef and N.M. Ghoniem (Eds. ), Patterns, Defects and Material Instabilities, Kluwer Academic, 1990, pp.277-301.

DOI: 10.1007/978-94-009-0593-1_20

Google Scholar

[7] K.W. Schwarz, Simulation of dislocations on the mesoscopic scale. I. Methods and examples, J. Appl. Phys. 85 (1999) 108-119.

Google Scholar

[8] H.M. Zbib, M. Rhee, J.P. Hirth, On Plastic Deformation and the Dynamics of 3D dislocations, Int. J. Mech. Sci. 40 (1998) 113-127.

DOI: 10.1016/s0020-7403(97)00043-x

Google Scholar

[9] S. -W. Lee, S. Aubry, W.D. Nix, Wei Cai, Dislocation junctions and jogs in a free-standing FCC thin film, Modelling and Simulation in Materials Science and Engineering, 19 (2011) 1-13.

DOI: 10.1088/0965-0393/19/2/025002

Google Scholar

[10] A.K. Head, Phil. Mag., 44 (1953) 92-93.

Google Scholar

[11] A. Hartmaier, M.C. Fivel, G. R. Canova, P. Gumbsch, Image stresses in a free-standing thin film, Modelling and Simulation in Materials Science and Engineering, 7 (1999) 7781-793.

DOI: 10.1088/0965-0393/7/5/310

Google Scholar

[12] D. Weygand, M. Poignant, P. Gumbsch, O. Kraft, Three-dimensional dislocation dynamics simulation of the influence of sample size on the stress-strain behavior of fcc single-crystalline pillars, Mater. Sci. Engg. A 188 (2008) 483-484.

DOI: 10.1016/j.msea.2006.09.183

Google Scholar

[13] S.P. Baker, A. Kretschmann, and E. Arzt, Thermomechanical Behavior of Different Texture Components in Cu Thin Films, Acta Materialia 49 (2001) 2145-2160.

DOI: 10.1016/s1359-6454(01)00127-6

Google Scholar

[14] B. D. T. Hoc, L. Kubin, Dislocation mean free paths and strain hardening of crystals, Science, 320 (2008), 1745–1748.

DOI: 10.1126/science.1156101

Google Scholar

[15] B. Devincre, T. Hoc, L. P. Kubin, Collinear interactions of dislocations and slip systems, Materials Science and Engineering A, 400-401 (2005), 182–185.

DOI: 10.1016/j.msea.2005.02.071

Google Scholar

[16] A. Vattre, B. Devincre, A. Roos, Orientation dependence of plastic deformation in nickel-based single crystal superalloys: Discrete continuous model simulations, 58 (2010), 1938–(1951).

DOI: 10.1016/j.actamat.2009.11.037

Google Scholar

[17] S.K. Sahoo, V.D. Hiwarkar, I. Samajdar, G.K. Dey, D. Srivastav, R. Tiwari, S. Banerjee, Heterogeneous deformation in single-phase zircaloy 2, Scripta Mater 56 (2007), 963 – 966.

DOI: 10.1016/j.scriptamat.2007.02.008

Google Scholar

[18] V. V. Bulatov and W. Cai, Computer Simulations of Dislocations. Oxford University Press, (2006).

Google Scholar

[19] W. Cai, A. Arsenlis, R. C.R. Weinberger, V.V. Bulatov, A non-singular continuum theory of dislocations, Journal of the Mechanics and Physics of Solids, 54 (2006), 561–587.

DOI: 10.1016/j.jmps.2005.09.005

Google Scholar

[20] G. Monnet, B. Devincre, L.P. Kubin, Dislocation study of prismatic slip systems and their interactions in hexagonal close packed metals: Application to zirconium, 52 (2004), 4317–4328.

DOI: 10.1016/j.actamat.2004.05.048

Google Scholar