Challenges in Manufacturing Aluminium Based Metal Matrix Nanocomposites via Stir Casting Route

Article Preview

Abstract:

The influence of material processing conditions for preparing aluminium based metal matrix nanocomposites through stir casting route is reviewed. The role of particle size with respect to Brownian motion, Stokes settling velocity and strengthening mechanism is assessed from theoretical understandings. Variation of microstructural features and mechanical properties of the nanocomposites are predicted from theoretical concepts and related mathematical models. Experiments conducted to validate the theoretical predictions show that both Orowan and grain refinement strengthening mechanisms remain operative which is the key to the improved strength property of the nanocomposites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

72-80

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.C. Kang, S.L. Chan, Tensile properties of nanometric Al2O3 particulate-reinforced aluminium matrix composites, Mater. Chem. Phys. 85 (2004) 438-443.

DOI: 10.1016/j.matchemphys.2004.02.002

Google Scholar

[2] M. Khodaei, M.H. Enayati, F. Karimzadeh, The structure and mechanical properties of Fe3Al–30vol. % Al2O3 nanocomposite, J. Alloys Compds. 488 (2009) 134–137.

DOI: 10.1016/j.jallcom.2009.09.005

Google Scholar

[3] D. Roy, S. Ghosh, A. Basumallick, B. Basu, Preparation of Fe-aluminide reinforced in situ metal matrix composites by reactive hot pressing, Mater. Sci. Eng. A. 415 (2006) 202–206.

DOI: 10.1016/j.msea.2005.09.100

Google Scholar

[4] J-M Lee, S-B Kang, T. Sato, H. Tezuka, A. Kamio, Microstructures and mechanical properties of Al3Fe reinforced aluminium matrix composites fabricated by a plasma synthesis method, Mater. Trans. 43 (2002) 2487-2493.

DOI: 10.2320/matertrans.43.2487

Google Scholar

[5] M. Cournil, F. Gruy, P. Cugniet, P. Gardina, H. Saint-Raymond, Model of aggregation of solid particles in non-wetting liquid medium, Centre SPIN, URA CNRS 2021, Ecole Nationale Supérieure des Mines de Saint-Etienne.

DOI: 10.1016/j.cep.2006.01.003

Google Scholar

[6] S. Melis, M. Verduyn, G. Storti, M. Morbidelli, J. Bałdyga, Effect of fluid motion on the aggregation of small particles subject to interaction forces, AIChE J., 45 (1383 – 1393) (1999).

DOI: 10.1002/aic.690450703

Google Scholar

[7] J. Hashim, L. Looney, M.S.J. Hashmi, Particle distribution in cast metal matrix composites—Part I, J. Mater. Process. Technol. 123 (2002) 251–257.

DOI: 10.1016/s0924-0136(02)00098-5

Google Scholar

[8] J Lan, Y Yang, X Li, Microstructure and microhardness of SiC nano particles reinforced magnesium composites fabricated by ultrasonic method, Mater. Sci. Eng. A 386 (2004) 284–290.

DOI: 10.1016/s0921-5093(04)00936-0

Google Scholar

[9] I. Narasimha Murthy, D. Venkata Rao, J. Babu Rao, Microstructure and mechanical properties of aluminum–fly ash nano composites made by ultrasonic method, Mater. Design 35 (2012) 55–65.

DOI: 10.1016/j.matdes.2011.10.019

Google Scholar

[10] J. Hashim, L. Looney, M.S.J. Hashmi, The wettability of SiC particles by molten aluminium, J. Mater. Process. Technol. 119 (2001) 324 – 328.

DOI: 10.1016/s0924-0136(01)00975-x

Google Scholar

[11] Y. Yang, X. Li, Ultrasonic Cavitation Based Nanomanufacturing of Bulk Aluminum Matrix Nanocomposites, J. Manuf. Sci. Eng. 129 (2007) 497-501.

DOI: 10.1115/1.2714583

Google Scholar

[12] P. K. Rohatgi and B. Schultz, Mater. Matters, Lightweight Metal Matrix Nanocomposites – Stretching the Boundaries of Metals, 24 (2007) 1 – 6.

Google Scholar

[13] B.F. Schultz, J.B. Ferguson, P.K. Rohatgi, Microstructure and hardness of Al2O3 nanoparticle reinforced Al–Mg composites, Mater. Sci. Eng. A. 530 (2011) 87-97.

DOI: 10.1016/j.msea.2011.09.042

Google Scholar