A Theoretical Study on the Performance of SnO2/SiO2/n-Si Solar Cells

Article Preview

Abstract:

The performance of SnO2/SiO2/n-Si solar cells was studied by considering various transport mechanisms including minority-carrier diffusion, carrier recombination, and tunneling through insulating layer. The tunneling current through the SiO2 layer was obtained by employing the Airy-wavefunction approach. The efficiency was calculated to determine the performance of the cells under AM1 illumination for different values of insulating layer thickness, interface state density, hole life-time, doping density of silicon substrate, and cell thickness. It was shown that the efficiency increases as the insulating layer becomes thinner due to the decrease of short-circuit current. It was also shown that the efficiency increases as the doping density increases up to 6x1022/m3 and it then decreases for higher doping densities. As the interface state density decreases, the efficiency becomes higher. In addition, the increases in the hole lifetime and cell thickness enhance the efficiency of the solar cell.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-8

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Shewchun, R. Singh, M. A. Green, Theory of metal-insulator-semiconductor solar cells, J. Appl. Phys. 48 (1977) 765-770.

DOI: 10.1063/1.323667

Google Scholar

[2] H. C. Card, Photovoltaic properties of MIS-Schottky barriers, Solid-State Electron 20 (1977) 971-976.

DOI: 10.1016/0038-1101(77)90206-4

Google Scholar

[3] L. Li, H. Xiang, Preparation and research on TiO2/SiO2 nanofilm with high transmittance on solar cell glass, Mater. Sci. Forum 610 (2009) 382-388.

DOI: 10.4028/www.scientific.net/msf.610-613.382

Google Scholar

[4] C. G. Granqvist, A. Hultaker, Transparent and conducting ITO films: new developments and applications, Thin Solid Films 411 (2002) 1-5.

DOI: 10.1016/s0040-6090(02)00163-3

Google Scholar

[5] Y. –H. Hu, H. –J. Xu, H. Gao, Y. –C. Chen, fabrication the texture zinc oxide thin films and its application in hydrogenated amorphous silicon solar cell, Mater. Sci. Forum 663 (2011) 1077-1080.

DOI: 10.4028/www.scientific.net/msf.663-665.1077

Google Scholar

[6] D. Hocine, M. S. Belkaïd, K. Lagha, Influence of interfacial oxide layer thickness on conversion efficiency of SnO2/SiO2/Si(N) solar cells, Revue des Energies Renouvelables 11 (2008) 379-384.

DOI: 10.24084/repqj06.255

Google Scholar

[7] C. Kilic, A. Zunger, Origins of coexistence of conductivity and transparency in SnO2, Phys. Rev. Lett. 88 (2002) 095501-1/4.

Google Scholar

[8] Y. Matsui, Y. Yamamoto, S. Takeda, Stability in electrical properties of ultra thin oxide films, Mat. Res. Sym. Proc. 621 (2000) 491-496.

DOI: 10.1557/proc-621-q4.9.1

Google Scholar

[9] Y. Mi, H. Okada, S. Iwata, Electronic structures and optical properties of ZnO, SnO2, and In2O3, Jpn. J. Appl. Phys. 38 (1999) 3453-3457.

Google Scholar

[10] M.-M. Bagheri-Mohagheghi, M. Shokooh-Saremi, The influence of Al doping on the electrical, optical and structural properties of SnO2 transparent conducting films deposited by the spray pyrolysis technique, J. Phys. D: Appl. Phys. 37 (2004) 1248-1253.

DOI: 10.1088/0022-3727/37/8/014

Google Scholar

[11] R. Gordon, Criteria for choosing transparent conductors, MRS Bull. 25 (2000) 52-57.

DOI: 10.1557/mrs2000.151

Google Scholar

[12] H. –W. Ryu, Y. –J. Park, H. –S. Noh, J. –S. Park, Characteristics of SnO2 thin films deposited by RF magnetron sputtering, Mater. Sci. Forum 449 (2004) 993-996.

DOI: 10.4028/www.scientific.net/msf.449-452.993

Google Scholar

[13] W. W. Wenas, S. Riyadi, Carrier transport in high-efficiency ZnO/SiO2/Si solar cells, Sol. Energy Mater. Sol. Cells 90 (2006) 3261-3267.

DOI: 10.1016/j.solmat.2006.06.026

Google Scholar

[14] F. Bouzid, S. Ben Machich, The effect of solar spectral irradiance and temperature on the electrical characteristics of a ZnO-SiO2-Si (N) photovoltaic structure, Revue des Energies Renouvelables 13 (2010) 283-294.

Google Scholar

[15] A. B. Suryamas, Electron spin polarization in semiconductor heterostructure with single and double barriers, Thesis Magister, Institut Teknologi Bandung, Indonesia, 2007. (in Indonesian)

Google Scholar

[16] F. A. Noor, M. Abdullah, Sukirno, Khairurrijal, Comparison of electron transmittances and tunneling currents in an anisotropic TiNx/HfO2/SiO2/p-Si(100) metal oxide–semiconductor (MOS) capacitor calculated using exponential- and Airy wavefunction approaches and a transfer matrix method, J. Semicond. 31 (2010) 13402-1/5.

DOI: 10.1088/1674-4926/31/12/124002

Google Scholar

[17] S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd Edition, John Wiley & Sons, New Jersey, 2007.

Google Scholar

[18] W. Xie, L. Zhang, S. Liu, Modification of the electrodes of organic light-emitting devices using the SnO2 ultrathin layer, Semicond. Sci. Technol. 19 (2004) 380-383.

DOI: 10.1088/0268-1242/19/3/014

Google Scholar

[19] J. Shewchun, J. Dubow, A. Myszkowski, R. Singh, R, The Operation of the Semiconductor-Insulator-Semiconductor (SIS) Solar Cells: Theory, J. Appl. Phys. 49 (1978) 855-864.

DOI: 10.1063/1.324616

Google Scholar

[20] Khairurrijal, W. Mizubayashi, S. Miyazaki, M. Hirose, Analytic model of direct tunnel current through ultrathin gate oxides, J. Appl. Phys. 87 (2000) 3000-1/5.

DOI: 10.1063/1.372290

Google Scholar

[21] J. F. Wager, Transparent electronics: Schottky barrier and heterojunction considerations, Thin Solid Films 516 (2008) 1755–1764.

DOI: 10.1016/j.tsf.2007.06.164

Google Scholar

[22] E. J. H. Lee, C. Ribeiro, T. R. Giraldi, E. Longo, E. R. Leitea, J. A. Varela, Photoluminescence in quantum-confined SnO2 nanocrystals: evidence of free exciton decay, Appl. Phys. Lett. 84 (2004) 1745-1747.

DOI: 10.1063/1.1655693

Google Scholar

[23] A. H. M. Shousha, Performance characteristics of thin film MIS solar cells, Sol. Wind Technol. 6 (1989) 705-712.

DOI: 10.1016/0741-983x(89)90008-8

Google Scholar

[24] N. R. Saha, D. Roychoudhury, P. K. Basu, Analytical study of the performance of minSIS solar cells with a back surface field, Appl. Phys. A 32 (1983) 187-193.

DOI: 10.1007/bf00820259

Google Scholar