Dye-Sensitized Solar Cells (DSSC) from Black Rice and its Performance Improvement by Depositing Interconnected Copper (Copper Bridge) into the Space between TiO2 Nanoparticles

Article Preview

Abstract:

Dye-sensitized solar cell (DSSC) which employed natural dye from black rice has been successfully fabricated and improved its performance by depositing interconnected copper (copper bridge) on the space between TiO2. The copper bridge has significant role in minimizing recombination of electron-hole which occurred in TiO2 surface by trapping electron and facilitating to anode. The presence of interconnected copper nanoparticle in the space between TiO2 nanoparticle was confirmed by Scanning Electron Microscopy (SEM) and X-Ray Diffractometer (XRD). The current-voltage (I-V) characterization of DSSC solar cells by using Keithley 617 was also performed to investigate performance of solar cells under sun illumination in varying intensities. It is found that performance of copper coated DSSC solar cells (efficiency 0.35% and fill factor 0.35) is higher than DSSC without copper coating (efficiency 0.17% and fill factor 0.35). This result is consistent with impedance spectroscopy analyzing where the internal resistance of copper coated DSSC solar cells is lower than DSSC without coated. It is concluded that performance of DSSC increasing with decreasing of internal resistance. Our finding is higher than other researcher reports in Ref. [13] and [14] with similar structure and kind of natural dye. In addition, this paper also reports the use of polymer electrolyte which employing polyvinyl acetate (PVA) containing lithium ion to maintain long-term stability of device.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-53

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Grätzel, J. Photochem. Photobiol. C, Photochem. Rev. 4 (2003) 145.

Google Scholar

[2] B. Lee, D-K. Hwang, P. Guo, S-T. Ho, D.B. Buchholtz, C-Y. Wang and R.P.H. Chang, J. Phys. Chem. B 114 (2010) 14582.

Google Scholar

[3] A. Islam, S.P. Singh, M. Yanagida, M.R. Karim and L. Han, Int. J. Photoen. 201 (2011) 1.

Google Scholar

[4] S.P. Singh, A. Islam, M. Yanagida and L. Han, Int. J. Photoen. 2011 (2011) 1.

Google Scholar

[5] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide and L. Han, Jpn. J. Appl. Phys. 45 (2006) L638.

Google Scholar

[6] F.O. Lenzmann and J.M. Kroon, Adv. OptoElectron. 27 (2007) 1.

Google Scholar

[7] Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L.Q. Chen and Q. Meng, Electrochem. Commun. 9 (2007) 596.

Google Scholar

[8] B. O'Regan and M. Grätzel, Lett. Nature 353 (1991) 737.

Google Scholar

[9] V.A. Isnaeni, O. Arutanti, E. Sustini, H. Aliah, Khairurrijal and M. Abdullah, Environ. Prog. Sustain. Energy 01 (2011) 1.

DOI: 10.1002/ep.10596

Google Scholar

[10] Masturi, Silvia, M.P. Aji, E. Sustini, Khairurrijal and M. Abdullah, Am. J. Environ. Sci. 8 (2012) 79.

Google Scholar

[11] M. Abdullah, Y. Virgus, Nirmin and Khairurrijal, J. Nano Saintek. 1 (2008) 33.

Google Scholar

[12] J. Halme, J. Saarinen and P. Lund, Solar Energy Mat. Solar Cells 90 (2006) 887.

Google Scholar

[13] B. Yuliarto, W. Septina, K. Fuadi, F. Fanani, L. Muliani and Nugraha, Adv. Mat. Sci. Eng., 2010 (2010) 1.

Google Scholar

[14] M.H. Buraidah, L. P. Teo, S.N.F. Yusuf, M.M. Noor, M.Z. Kufian, M.A. Careem, S. R. Majid, R.M. Taha and A. K. Arof, Int. J. Photoen. 2011 (2011) 273683.

Google Scholar

[15] M.R. Narayan, Renew. Sustain. Energy Rev. 16 (2012) 208.

Google Scholar

[16] Q. Dai and J. Rabani, J. Photochem. Photobiol. A, Chem. 148 (2002) 17.

Google Scholar

[17] H. Zhou, L. Wu, Y. Gao and T. Ma, J. Photochem. Photobiol. A, Chem. 219 (2011) 188.

Google Scholar

[18] G. Calogero, G.D. Marco, S. Cazzanti, S. Caramori, R. Argazzi, A.D Carlo and C.A. Bignozzi, Int. J. Mol. Sci. 11 (2010) 254.

DOI: 10.3390/ijms11010254

Google Scholar

[19] M.H. Bazargan, M.M. Byranvand, A.N. Kharat and L. Fatholahi, Optoelectro. Adv. Mat. Rapid Comm. 5 (2011) 360.

Google Scholar

[20] H. Takeuchi and S. Furukawa, IEICE Trans Electron. E94-C 12 (2011) 1832.

Google Scholar

[21] S. Hao, J. Wu, Y. Huang and J. Lin, Solar Energy 80 (2006) 209.

Google Scholar

[22] F. Xu and L Sun, Energy Environ. Sci. 4 (2011) 818.

Google Scholar

[23] M-S. Kang, J.H. Kim, Y.J. Kim, J. Won, N-G. Park and Y.S. Kang, Chem. Commun. 889 (2005) 889.

Google Scholar

[24] K.J. Jiang, Y.L. Sun, K.F. Shao, J.F. Wang and L.M. Yang, Chin. Chem. Lett. 14 (2003) 1093

Google Scholar

[25] Q. Wang, Z. Zhang, S.M. Zakeeruddin and M. Gratzel, J. Phys. Chem. C 2008 112 (2008) 7084.

Google Scholar

[26] P. Johshi, Y. Xie, M. Ropp, D. Galipeau, S. Bailey and Q. Qiao, Energy Environ. Sci. 2009 (2009) 426.

Google Scholar

[27] Y-S. Wei, Q-Q. Jin and T-Z. Ren, Sol.-Sta. Electro. 63 (2011) 76.

Google Scholar

[28] X. Wang, D.R.G. Mitchell, K. Prince, A.J. Atanacio and R.A. Caruso, Chem. Mater. 20 (2008) 3917.

Google Scholar

[29] Y.H. Su, W.H. Lai, L.G. Teoh, M.H. Hon and J.L. Huang, Appl. Phys. A 88 (2007) 173.

Google Scholar

[30] W.H. Lai, Y.H. Su, L.G. Teoh and M.H. Hon, J. Photochem. Photobiol. A, Chemistry 195 (2008) 307.

Google Scholar

[31] U. Pal, E.A. Almanza, O.V. Cuchilloa, N. Koshizaki, T. Sasaki and S. Terauchi, Solar Energy Mat. Solar Cells 70 (2001) 363.

DOI: 10.1016/s0927-0248(01)00077-0

Google Scholar

[32] Y. Tian, H. Notsu and T. Tatsuma, Photochem. Photobiol. Sci. 4 (2005) 598.

Google Scholar

[33] V. Dhas, S. Muduli, W. Lee, S-H. Han and S. Ogale, Appl. Phys. Lett. 93 (2008) 243108.

Google Scholar

[34] C.K.N. Peh, L. Ke and G.W. Ho: Mat. Lett. 64 (2010) 1372.

Google Scholar

[35] T. Bora, H.H. Kyaw, S. Sarkar, S.K. Pal and J. Dutta, Beilstein J. Nanotechnol. 2 (2011) 681.

Google Scholar

[36] S. Saehana, R. Prasetyowati, M.I. Hidayat, Khairurrijal and M. Abdullah, AIP Conf. Proc. 1284 (2010) 154.

Google Scholar

[37] S. Saehana, R. Prasetyowati, M.I. Hidayat, P. Arifin, Khairurrijal and M. Abdullah, AIP Conf. Proc. 1415 (2011) 163.

Google Scholar

[38] S. Saehana, R. Prasetyowati, M. I. Hidayat, P. Arifin, Khairurrijal and M. Abdullah, IJBAS/IJENS 11 (2011) 15.

Google Scholar

[39] S. Saehana, P. Arifin, Khairurrijal and M. Abdullah, J. Appl. Phys. 111 (2012) 123109

Google Scholar

[40] M. Abdullah dan Khairurrijal, Karakterisasi Nanomaterial, Teori, Penerapan dan Pengolahan Data, Rezeki Putra Bandung Press, Bandung, 2010.

Google Scholar

[41] L. Han, Y. Koide, Y. Chiba, A. Islam and T. Mitate, Comptes Rendus Chimie 9 (2006) 645.

DOI: 10.1016/j.crci.2005.02.046

Google Scholar

[42] L. Han, N. Koide, Y. Chiba, A. Islam, R. Komiya, N. Fuke, A. Fukui and R. Yamanaka, Appl. Phys. Lett. 86 (2005) 213501.

DOI: 10.1063/1.1925773

Google Scholar

[43] L. Han, N. Koide, Y. Chiba and T. Mitate, Appl. Phys. Lett. 84 (2004) 2433.

Google Scholar

[44] R. Kern, R. Sastrawan, J. Ferber, R. Stangl and J. Luther, Electrochim. Acta 47 (2002) 4213.

Google Scholar

[45] M. Radecka, M. Wierzbicka and M. Rekas, Physica B, Cond. Matt. 351 (2004) 121.

Google Scholar

[46] T. Hoshikawa, R. Kikuchi and K. Eguchi, J. Electroanal. Chem. 588 (2006) 59.

Google Scholar

[47] T. Hoshikawa, T. Ikebe, R. Kikuchi and K. Eguchi, Electrochim. Acta 51 (2006) 5286.

Google Scholar

[48] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata and S. Isoda, J. Phys. Chem. B 110 (28) (2006) 2053.

Google Scholar

[49] V. Yong, S-T. Ho and R.P.H. Chang, Appl. Phys. Lett. 92 (2008) 143506.

Google Scholar

[50] T. Hanmin, Z. Xiaobo, Y. Shikui, W. Xiangyan, T. Zhipeng, L. Bin, W. Ying, Yu Tao and Z. Zhigang, Solar Energy 83 (2009) 715.

DOI: 10.1016/j.solener.2008.10.019

Google Scholar