Effect of Size of Cellulose Particle as Filler in the PVC Biocomposites on their Thermal and Mechanical Properties

Article Preview

Abstract:

The combination between synthetic polyolefin with natural polymer such as cellulose, starch and chitosan can stimulate biodegradation processes of waste plastics such as polyethylene (PE), polypropylene (PP) and other conventional plastics. In this work, PVC (polyvinyl chloride) biocomposite was prepared by compounding cellulose particle into PVC matrix in the presence of PVC-g-maleic anhydride as a compatibilizer. Cellulose nanoparticles were prepared by physical top-down method after milling by using High-Energy Ball-mill. The diameter size of cellulose nanoparticle was obtained as 170 nm. Cellulose particles were added as filler with ratio of 10-30 phr in PVC matrix. PVC biocomposites was prepared as a sheet film with the thickness of 0.3 mm by hot-press method. The addition of cellulose particle into PVC matrix was examined in various filler volumes and various cellulose particle sizes. The obtained PVC composite films were characterized by means of Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA) and Fourier-Transformed Infrared (FTIR) spectroscopy. The rheological and mechanical properties of PVC and cellulose composites were investigated as a function of surface structure and filler volume fraction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-73

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. P. La Mantia, M. Morreale, Green composites, a Brief Review, Composites Part A 42 (2011) 579-588.

DOI: 10.1016/j.compositesa.2011.01.017

Google Scholar

[2] A.E. Goulas, K. I. Anifantaki, D.G. Kolioulis, Migration of Di-(2-ethylhexyl) Adipate Plasticizer from Food-Grade Polyvinyl Chloride Film into Hard and Soft Cheeses, J. Dairy Sci. 83 (2000) 1712–1718.

DOI: 10.3168/jds.s0022-0302(00)75040-5

Google Scholar

[3] Favier,V., Chanzy,H., and Cavaille J.Y. Polymer Nanocomposites Reinforced by Cellulose Whiskers, Macromolec. 28 (1996) 6365-6367.

DOI: 10.1021/ma00122a053

Google Scholar

[4] L. Chazeau, J. Y. Cavaillé, P. Terech, Mechanical Behaviour above Tg of a Plasticized PVC Reinforced with Cellulose Whiskers: a SANS Structural Study, Polymer 40 (1999) 5333-5344.

DOI: 10.1016/s0032-3861(98)00748-4

Google Scholar

[5] Y. Soudais, L. Moga, J. Blazek, F. Lemort, Coupled DTA-TGA-FTIR Investigation of pyrolytic decomposition of EVA, PVC and cellulose, J. Anal. Appl. Pyrolysis 78 (2007) 46-57.

DOI: 10.1016/j.jaap.2006.04.005

Google Scholar

[6] D.R. Mulinari, H.J.C. Voorwald, M.O.H. Cioffi, M.L.C.P. Da Silva, T.G. da Cruz, C. Saron, Sugarcane Bagasse Cellulose/ HDPE Composites Obtained by Extrusion, Composites Sci. Tech. 69 (2009) 214-219.

DOI: 10.1016/j.compscitech.2008.10.006

Google Scholar

[7] C. Alves, P.M.C. Ferrão, A.J. Silva, L.G. Reis, M. Freitas, L.B. Rodrigues, D.E. Alves, Ecodesign of Automotive Components Making Use of Natural Jute Fiber Composites, J. Cleaner Prod. 18 (2010) 313-327.

DOI: 10.1016/j.jclepro.2009.10.022

Google Scholar

[8] A. Ashori, Wood–plastic Composites as Promising Green-composites for Automotive Industries, Biores. Technol. 99 (2008) 4661-4667.

DOI: 10.1016/j.biortech.2007.09.043

Google Scholar

[9] H. Ku, H. Wang, N. Pattarachaiyakoop, M. Trada, A review on the Tensile Properties of Natural Fiber Reinforced Polymer Composites, Composites Part B: Eng. 42 (2011) 856-873.

DOI: 10.1016/j.compositesb.2011.01.010

Google Scholar

[10] L. Avérous, C. Fringant, L. Moro. Plasticized Starch-Cellulose Interaction in Polysaccharide Composites. Polym. 42 (2001) 6565-6572.

DOI: 10.1016/s0032-3861(01)00125-2

Google Scholar

[11] H.A. Pushpadass, P. Bhandari, M.A. Hanna. Effect of LDPE and Glycerol Content and Compounding on The Microstructure and Properties Of Starch Composite Film. Carbohydrate Polym. 82 (2010) 1082-1089.

DOI: 10.1016/j.carbpol.2010.06.032

Google Scholar

[12] I. Arvanitoyannis, C.G. Biliaderis, H. Ogawa, N. Kawasaki. Biodegradable Films Made From Low-Density Polyethylene (LDPE), Rice Starch and Potato Starch For Food Packaging Applications: Part 1. Carbohydrate Polym. 36 (1998) 89-104.

DOI: 10.1016/s0144-8617(98)00016-2

Google Scholar

[13] I.M. Thakore, S. Desai, B.D. Sarawede, S. Devi. Studies on Biodegradability, Morphology and Thermo-Mechanical Properties of LDPE/modified Starch Blends. Eur. Polym. J. 37 (2001) 151-160.

DOI: 10.1016/s0014-3057(00)00086-0

Google Scholar

[14] R.R.N. Sailaja, M.V. Deepthi. Mechanical and Thermal Properties of Compatibilized Composites of Polyethylene and Esterified Lignin. Material and Design 31 (2010) 4369-4379.

DOI: 10.1016/j.matdes.2010.03.046

Google Scholar

[15] H. Wang, R. Chang, K. Sheng, M. Adl, X. Qian. Impact Response of Bamboo with The Properties of Bamboo and Polyvinylchloride (PVC). J. Bionic Eng. Suppl. 2 (2008) 28-33.

DOI: 10.1016/s1672-6529(08)60068-2

Google Scholar

[16] Y.T. Zheng, D.R. Chao, D.S. Wang. J.J. Chen. Study On The Interface Modification of Bagasse Fibre and The Mechanical Properties of Its Composite With PVC. Composite Part A 38 (2007) 20-25.

DOI: 10.1016/j.compositesa.2006.01.023

Google Scholar

[17] I. Bonadies, M. Avella, R. Avolio, C. Carfagna, G. Gentile, B. Immirzi, M.E. Errico. Probing The Effect Of High Energy Ball Milling on PVC Through a Multitechnique Approach. Polym. Testing 31 (2012) 176-181.

DOI: 10.1016/j.polymertesting.2011.10.010

Google Scholar

[18] H. Wiebking, Filler in PVC: a Review of The Basic, Specialty Minerals Inc. (1998).

Google Scholar

[19] A. Sionkowska, Current research on the blends of natural and synthetic polymers as new biomaterials: Review, Prog. in Polym. Sci. 36 (2011) 1254-1276.

DOI: 10.1016/j.progpolymsci.2011.05.003

Google Scholar

[20] S.M. Luz, A.R. Goncalves, A.P. Del'Arco Jr . Mechanical Behaviour and Microstructural Analysis of Sugarcane Bagasse Fiber reinforce Polypropylene Composite. Composites A 38 (2007) 1455-1461.

Google Scholar

[21] P. Ganguly, W.J. Poole. Characterization of Reinforcement Distribution Inhomogeneity in Metal Matrix Composites. Mater Sci Eng A 332 (2002) 301-310.

DOI: 10.1016/s0921-5093(01)01757-9

Google Scholar

[22] M. A. Da Silva, M. G. A. Vieira, A. C. G. Mocumoto, M. M. Beppu, Polyvinylchloride (PVC) and natural rubber films plasticized with a natural polymeric plasticizer obtained through polyesterification of rice fatty acid, Polym. Testing 30 (2011) 478-484.

DOI: 10.1016/j.polymertesting.2011.03.008

Google Scholar

[23] A. Ramesh, K. H. Leen, K. Kumutha, A. K. Arof, FTIR studies of PVC/PMMA blend based polymer electrolytes, Spectrochim. Acta Part A 66 (2007) 1237.

DOI: 10.1016/j.saa.2006.06.012

Google Scholar

[24] D. Feldman, D. Banu, Contribution to the study of rigid PVC polyblends with different lignins, J. Applied Polym. Sci. 66 (1997) 1731-1744.

DOI: 10.1002/(sici)1097-4628(19971128)66:9<1731::aid-app11>3.0.co;2-y

Google Scholar

[25] Q. Yao, C.A. Wilkie. Thermal Degradation of PVC in the Presence of Polystyrene. J. Vinyl Addit Technol. 7 (2001) 26.

DOI: 10.1002/vnl.10261

Google Scholar

[26] M.C. Sunny, P. Ramesh, K.E. George, Use of polymeric plasticizer in polyninyl chloride to reduce conventional plasticizer migration for critical applications, J. Elastom Plast. 36 (2004) 19

DOI: 10.1177/0095244304038016

Google Scholar