The Self-Accommodation and Rearrangement of Martensite Multi-Variants under Cyclic Stress: Phase-Field Simulation

Article Preview

Abstract:

A twin boundary model was established to describe the multi-variant interface in the martensitic materials. The modified semi-implicit Fourier-spectral method was proposed to solve the 3-D phase-field equation. Self-accommodation plays an important role in the micro-structural evolution during the loading and unloading. The external compressive stress can cause the rearrangement of martensites from three variants to one variant. After releasing the loading, another variant can nucleate and grow in one variant at the twin boundary. Cyclic stress may lead to the redistribution of martensite variants besides the rearrangement.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 738-739)

Pages:

143-149

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Saburi, C.M. Wayman, K. Takata, S. Nenno, Acta Metall. 28 (1980)15.

Google Scholar

[2] K. Madangopal, Acta Mater. 45 (1997) 5347.

Google Scholar

[3] V. Pancholi, M. Krishnan, I.S. Samajdar, V. Yadav, N.B. Ballal, Acta Mater. 56 (2008) (2037).

Google Scholar

[4] Y. Tanaka Y, Y. Himuro, R. Kainuma, Y. Sutou, T. Omori and K. Ishida, Science, 327(2010)1488.

DOI: 10.1126/science.1183169

Google Scholar

[5] V.I. Levitas, V.A. Levin, K.M. Zingerman, and E.I. Freiman, Phys. Rev. Lett. 103, 025702 (2009).

Google Scholar

[6] M.E. Gruner, G. Rollmann, P. Entel, and M. Farle, Phys. Rev. Lett. 100 (2008) 087203.

Google Scholar

[7] A. Artemev, Y. Wang, and A.G. Khachaturyan, Acta Mater. 48 (2000) 2503.

Google Scholar

[8] L.Q. Chen and J. Shen, Comp. Phys. Commu. 108(1998) 147.

Google Scholar

[9] Q.C. Tian, F.X. Yin, T. Sakaguchi and K. Nagai, Acta Mater. 54(2006) 1805.

Google Scholar

[10] M. Fukuhara, F.X. Yin, Y. Ohsawa, S. Takamori, Mater. Sci. & Eng. A 442 (2006) 439.

Google Scholar

[11] J. Man, J.H. Zhang, and Y.H. Rong, Appl. Phys. Lett., 96(2010) 131904.

Google Scholar

[12] Q.C. Tian, F.X. Yin, T. Sakaguchi and K. Nagai, Mater. Sci. & Eng. A 438(2006) 374.

Google Scholar

[13] N. Scheerbaum Y.W. Lai, T. Leisegang, M. Thomas, J. Liu, K. Khlopkov, J. McCord, S. Fähler, R. Träger, D.C. Meyer, L. Schultz and O. Gutfleisch, Acta Mater. 58(2010) 4629.

DOI: 10.1016/j.actamat.2010.04.030

Google Scholar

[14] I. Aaltio, O. Soderberg, Y.L. Ge and S.P. Hannula, Scrip. Mater. 62(2010) 9.

Google Scholar

[15] B.H. Jiang, T. Tadaki, H. Mori, T.Y. Hsu, Mater. Trans. JIM, 38(1997) 1072; ibid, 38(1997)1078.

Google Scholar

[16] K. Oikawa, T. Ota, T. Ohmori, Y. Tanaka, H. Morito, A. Fujita, R. Kainuma, K. Fukamichi, and K. Ishida, Appl. Phys. Lett. 81(2002) 5201.

DOI: 10.1063/1.1532105

Google Scholar

[17] V.S. Alarcos,V. Recarte, J.I.P. Landazabal, M.A. Gonzalez, and J.A.R. Velamazan, Acta Mater. 57 (2009) 4224.

Google Scholar

[18] T.Y. Hsu (Xy Zuyao), Martensitic Transformation and Martensite (Science Press, Beijing, 1999), 2nd ed.

Google Scholar