Martensitic Transformation in Ni-Al-Pt High Temperature Shape Memory Alloys

Article Preview

Abstract:

In alloys Ni–39(41)Al–xPt (x = 5,10,15,20 at.%) the alloying by Pt strongly increases the Ms point. There is no direct proportionality between the Pt content and the Ms point increasing. No traces of Ni3Al were found in the alloys. The precipitation of Ni5Al3 was observed in Ni–39Al–15Pt alloy after cycling through the temperature range between the room temperature and 800°C. The effect of Pt alloying on the martensitic transformation and high temperature martensitic transformation stability is governed by the competition between the martensitic transformation and formation of the Ni5Al3 phase upon the cooling. Pt addition, instead of Ni, can resolve the problem of decomposition processes because the alloy composition is shifted out of the Ni3Al domain on the phase diagram and it reduces the influence of the Ni5Al3 phase on the degradation of martensitic transformation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 738-739)

Pages:

506-511

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.K. Au, C.M. Wayman, Thermoelastic behaviour of the martensitic transformation in b-Ni–Al alloys, Scripta Metall 6 (1972) 1209-1214.

DOI: 10.1016/0036-9748(72)90233-5

Google Scholar

[2] Y. Kim, C. M. Wayman, Shape memory effect in powder metallurgy NiAl alloys, Scr. Metall. Mater. 24 (1990) 245-250.

DOI: 10.1016/0956-716x(90)90250-k

Google Scholar

[3] N. Ono, A. Tsukahara, R. Kainuma, K. Ishida, Properties of two-phase Ni-Al-Fe shape memory alloys in the virgin and shape-memory-cycled states, Mater. Sci. Eng. A 273–275 (1999) 420-425.

DOI: 10.1016/s0921-5093(99)00310-x

Google Scholar

[4] N.V. Kataeva, S.V. Kositsin, A.I. Valiutin, Formation of Ni2Al and Ni5Al3 superstructures and reversibility of martensitic transformation in NiAl-based b-alloys, Mater. Sci. and Eng. A438 (2006) 312-314.

DOI: 10.1016/j.msea.2006.02.081

Google Scholar

[5] R. Kainuma, H. Ohtani, K. Ishida, Effect of alloying elements on martensitic transformation in the binary NiAl(β) phase alloys, Metall. Mater. Trans. A 27A (1996) 2445-2453.

DOI: 10.1007/bf02652338

Google Scholar

[6] S.H. Kim, D.M. Wee, M.H. Oh, Effects of ternary additions on the thermoelastic martensitic transformation of NiAl, Metall. Mater. Trans. A 34A (2003) 2089-(2095).

DOI: 10.1007/s11661-003-0273-z

Google Scholar

[7] Yu.N. Koval, G.E. Monastyrsky, V.V. Odnosum, T. Czeppe, R. Ya. Musienko, A. Yu. Sezonenko, Martensitic transformation in NiAlGa alloys, Metallofizika I Noveishie Tekhnologii, 31 (2009) 553-564.

Google Scholar

[8] H.Y. Kim, S. Miyazaki, Martensitic transformation behavior in Ni–Al and Ni–Al–Re melt-spun ribbons, Scr. Mat. 50 (2004) 237–241.

DOI: 10.1016/j.scriptamat.2003.09.011

Google Scholar

[9] D. Schryvers, L. Toth, J. Van Humbeeck, J. Beyer, Ni2Al versus Ni5Al3 ordering in Ni65Al35 austenite and martensite J. Phys. III, 5 (1995) C81029-C81033.

Google Scholar

[10] Y. Zhang, J.A. Haynes, B.A. Pint, I.G. Wright, W.Y. Lee, Martensitic transformation in CVD NiAl and (Ni, Pt)Al bond coatings. Surface and Coatings Technology, 163-164 (2003) 19–24.

DOI: 10.1016/s0257-8972(02)00585-6

Google Scholar

[11] D.J. Sordelet, M.F. Besser, R.T. Ott, B.J. Zimmerman, W.D. Porter, B. Gleeson, Isothermal nature of martensite formation in Pt-modified b-NiAl alloys. Acta Materialia 55 (2007) 2433–2441.

DOI: 10.1016/j.actamat.2006.11.038

Google Scholar