Role of Phase Stress in Variations of Cell Behavior on NiTi

Article Preview

Abstract:

Phase stresses that arise from volume mismatch between austenite and martensite crystal lattices were studied at different stages of direct and reverse martensitic transformations in NiTi alloy for medical application. The absolute stress values of tensile and compressive stresses that operated in austenite and martensite respectively were shown to be Gaussian functions of phase composition: they increased from zero in the initial single-phase state, achieved maximum at the equilibrium between the initial and new phases and decreased to zero in the ultimate phase. Phase stress distribution on the surface of simulated two-phase sample and related distinctions in osteoblast-like cells’ behavior were analyzed. Negative effect of compressive stress on cell viability and probable mechanism of cell apoptosis are discussed. Recommendations concerning the choice of permissible size discrepancy between organ and implant as well as NiTi alloy composition to avoid/minimize negative consequences of two-phase state after implant installation are suggested.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 738-739)

Pages:

559-565

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Yahia (Ed. ), Shape memory implants, Springer, Verlag-Berlin-Heidelberg-NewYork, (2000).

Google Scholar

[2] A. Kapanen, A. Danilov, P. Lehenkari, J. Ryhanen, J. Tuukkanen, Effect of metal alloy surface stresses on the viability of ROS-17/2. 8 osteoblastic cells, J. Biomaterials 23 (2002) 3733-40.

DOI: 10.1016/s0142-9612(02)00107-2

Google Scholar

[3] V. Muhonen, Bone – biomaterial interface. The effects of surface modified NiTi shape memory alloy on bone cells and tissue, Acta Universitatis Oulensis D974, University of Oulu, 2008. Available online at: http: /herkules. oulu. fi/isbn9789514288340.

Google Scholar

[4] V. Muhonen, R. Heikkinen, A. Danilov, T. Jamsa, J. Ilvesaro, J. Tuukkanen, The phase state of NiTi implant material affects osteoclastic attachment, J Biomed Mater Res 75A (2005) 681-688.

DOI: 10.1002/jbm.a.30477

Google Scholar

[5] C.M. Wayman, Introduction to crystallography of martensitic transformations, MacMillan, New York, (1964).

Google Scholar

[6] A.N. Danilov, A.I. Razov, Determination of B19¢- martensite volume fraction in nickel-titanium alloys by x-ray diffraction, Physics of Solid State 53 7 (2011) 1378-1381.

DOI: 10.1134/s1063783411070067

Google Scholar

[7] A.N. Danilov, A.I. Razov, X-ray determination of stresses in medical constructions of nickel-titanium alloys by extrapolation method, Material Science 6 (2011) 29-31.

Google Scholar

[8] S. Miyazaki, K. Otsuka, Y. Suzuki, Transformation Pseudo-Elasticity and Deformation-Behavior in a Ti-50. 6 at-Percent Ni-Alloy, Scripta Metallurgica 15 (1981) 287-292.

DOI: 10.1016/0036-9748(81)90346-x

Google Scholar

[9] K. Madangopal and J. Singh, A Novel B19' Martensite in Nickel Titanium Shape Memory Alloys, Acta Mater. 48 (2000) 1325–1344.

DOI: 10.1016/s1359-6454(99)00423-1

Google Scholar

[10] K. Otsuka, T. Sawamura, K. Shimizu, Crystal structure and internal defects of equiatomic TiNi martensite, Phys. Stat. Sol. A 5 (1971) 457-470.

DOI: 10.1002/pssa.2210050220

Google Scholar

[11] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Progress in Materials Science 50 (2005) 511–678.

DOI: 10.1016/j.pmatsci.2004.10.001

Google Scholar

[12] O.T. Fackler, R. Grosse, Cell motility through plasma membrane blebbing, J Cell Biol. 181 (2008) 879–884.

DOI: 10.1083/jcb.200802081

Google Scholar

[13] L. Normana, K. Senguptab, H. Aranda-Espinozaa, Blebbing dynamics during endothelial cell spreading, European Journal of Cell Biology 90 (2011) 37–48.

DOI: 10.1016/j.ejcb.2010.09.013

Google Scholar

[14] J-Y. Tinevez, U. Schulze, G. Salbreux, J. Roensch, J-F. Joanny, and E. Paluchab, Role of cortical tension in bleb growth, Proc Natl Acad Sci U S A. 106 (2009) 18581–18586.

DOI: 10.1073/pnas.0903353106

Google Scholar

[15] J. C. Millsa, N. L. Stoneb, R. N. Pittmanb, Extranuclear Apoptosis. The Role of the Cytoplasm in the Execution Phase, JCB 146 (1999) 703-708.

Google Scholar

[16] M. L. Coleman, M. F. Olson, Rho GTPase signalling pathways in the morphological changes associated with apoptosis, Cell Death & Differentiation 9 (2002) 493-504.

DOI: 10.1038/sj.cdd.4400987

Google Scholar

[17] S. Elmore, Apoptosis: A Review of Programmed Cell Death, Toxicol Pathol 35 (2007) 495-516.

DOI: 10.1080/01926230701320337

Google Scholar

[18] N. D. Gallant, K. E. Michael, A. J. Garcı´a, Cell Adhesion Strengthening: Contributions of Adhesive Area, Integrin Binding, and Focal Adhesion Assembly, Molecular Biology of the Cell 16 (2005) 4329–4340.

DOI: 10.1091/mbc.e05-02-0170

Google Scholar

[19] M. Yoshigi, L. M. Hoffman, C. C. Jensen, H. J. Yost, M. C. Beckerle, Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement, JCB 171 (2005) 209-215.

DOI: 10.1083/jcb.200505018

Google Scholar

[20] A.J. Putnam, J.J. Cunningham, B.L. Pillemer, D.J. Mooney, External mechanical strain regulates membrane targeting of Rho GTPases by controlling microtubule assembly, AJP Cell Physiol 284 (2003) 627-639.

DOI: 10.1152/ajpcell.00137.2002

Google Scholar