Tension - Compression Asymmetry in Co49Ni21Ga30 High-Temperature Shape Memory Alloy Single Crystals

Article Preview

Abstract:

This paper reports on the tension-compression asymmetry of [001]-oriented Co49Ni21Ga30 single crystals at elevated temperatures. Maximum strains of -4.8 % and 8.6 % in compression and tension, respectively, were found. A linear Clausius-Clapeyron relationship was observed for both stress-states where the smaller slope in tension resulted in a significant increase of the phase transformation temperatures with stress, which reached 180 °C under a constant stress level of 150 MPa. In addition, the material demonstrated a large pseudoelastic temperature range of about 300 °C under both stress state conditions. The results in this study unequivocally indicate the potential of these alloys for applications where elevated temperatures and stress levels prevail.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 738-739)

Pages:

82-86

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Ma, I. Karaman, R.D. Noebe: Int. Mat. Rev. 55 (2010) 257.

Google Scholar

[2] K. Otsuka, C.M. Wayman: Shape memory materials. Cambridge University Press, (1999).

Google Scholar

[3] T.W. Duerig, K.N. Melton, D. Stöckel, C.M. Wayman: Engineering aspects of shape memory alloys. Butterworth–Heinemann, London, (1990).

Google Scholar

[4] G.S. Firstov, J. Van Humbeeck, Y.N. Koval: Mat. Sci. Eng. A 378 (2004) 2.

Google Scholar

[5] G.S. Firstov, J. Van Humbeeck, Y.N. Koval: Scripta Mat. 50 (2004) 243.

Google Scholar

[6] H. Xu, Y. Ma, C. Jiang: App. Phys. Lett. 82 (2003) 3206.

Google Scholar

[7] V.A. Chernenko, V. L'vov, J. Pons, E. Cesari: J. Appl. Phys. 93 (2003) 2394.

Google Scholar

[8] M. Sato, T. Okazaki, Y. Furuya, M. Wuttig: Mat. Trans. 44 (2003) 372.

Google Scholar

[9] K. Oikawa, T. Ota, F. Gejima, R. Ohmori, R. Kainuma, K. Ishida: Mat. Trans. 42 (2001) 2472.

Google Scholar

[10] J. Dadda, H.J. Maier, I. Karaman, Y.I. Chumlyakov: Acta Mat. 57 (2009) 6123.

Google Scholar

[11] P.J. Brown, K. Ishida, R. Kainuma, T. Kanomata, K.U. Neumann, K. Oikawa, B. Ouladdiaf, K.R.A. Ziebeck: J. Phys. Condens. Mat. 17 (2005) 1301.

DOI: 10.1088/0953-8984/17/8/008

Google Scholar

[12] Y.I. Chumlyakov, I.V. Kireeva, I. Karaman, E.Y. Panschenko, E.G. Zakharova, A.V. Tverskov, A.V. Ovsyannikov, K.M. Nazarov, V.A. Kirillov: Russ. Phys. J. 47 (2004) 893.

DOI: 10.1007/s11182-005-0030-4

Google Scholar

[13] J. Dadda, H.J. Maier, I. Karaman, H.E. Karaca, Y.I. Chumlyakov: Scripta Mat. 55 (2006) 663.

DOI: 10.1016/j.scriptamat.2006.07.005

Google Scholar

[14] J. Dadda, D. Canadinc, H.J. Maier, I. Karamann, H.E. Karaca, Y.I. Chumlyakov: Phil. Mag. A 87 (2007) 2313.

Google Scholar

[15] J. Dadda, H.J. Maier, D. Niklasch, I. Karaman, H.E. Karaca, Y.I. Chumlyakov: Metall. Mat. Trans. A 39 (2008) (2026).

DOI: 10.1007/s11661-008-9543-0

Google Scholar

[16] J. Dadda, H.J. Maier, I. Karaman, Y.I. Chumlyakov: Int. J. Mat. Res. 101 (2010) 1503.

Google Scholar

[17] J.A. Monroe, I. Karaman, H.E. Karaca, Y.I. Chumlyakov, H.J. Maier: Scr. Mat. 62 (2010) 368.

Google Scholar

[18] H. Sehitoglu, R. Hamilton, D. Canadinc, X.Y. Zhang, K. Gall, I. Karaman, Y. Chumlyakov, H.J. Maier.: Met. Mat. Trans. A 34 (2003) 5.

DOI: 10.1007/s11661-003-0203-0

Google Scholar

[19] K. Oikawa, T. Ota, Y. Imano, T. Omori, R. Kainuma, K. Ishida: J. Ph. Equ. Diff. 27 (2006) 75.

Google Scholar

[20] J. Dadda: Doctoral Thesis, University of Paderborn, (2009).

Google Scholar

[21] C. Picornell, J. Pons, E. Cesari: Acta Mater. 49 (2001) 4221.

Google Scholar