[1]
K. Ariyoshi, R. Yamato, T. Ohzuku, Zero-strain insertion mechanism of Li[Li1/3Ti5/3]O4 for advanced lithium-ion (shuttlecock) batteries, Electrochim. Acta. 51 (2005) 1125-1129.
DOI: 10.1016/j.electacta.2005.05.053
Google Scholar
[2]
E.M. Sorensen, S.J. Barry, H.K. Jung, J.R. Rondinelli, J.T. Vaughey, K.R. Poeppelmeier, Three dimensionally ordered macroporous Li4Ti5O12: effect of wall structure on electrochemical properties, Chem. Mater. 18 (2006) 482-489.
DOI: 10.1021/cm052203y
Google Scholar
[3]
C.H. Jiang, Y. Zhou, I. Honma, T. Kudo, H.S. Zhou, Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material, J. Power Sources. 166 (2007) 514-518.
DOI: 10.1016/j.jpowsour.2007.01.065
Google Scholar
[4]
W. Lu, J. Liu, Y.K. Sun, K. Amine, Electrochemical performance of Li4/3Ti5/3O4/Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 cell for high power applications, J. Power Sources 167 (2007) 212-216.
DOI: 10.1016/j.jpowsour.2006.12.077
Google Scholar
[5]
K.S. Park, A. Benayad, D.J. Kang, S.G. Doo, Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries, J. Am. Chem. Soc. 130 (2008) 14930-1.
DOI: 10.1021/ja806104n
Google Scholar
[6]
J.X. Ma, C.S. Wang, S. Wroblewski, Kinetic characteristics of mixed conductive electrodes for lithium ion batteries, J. Power Sources . 164 (2007) 849-856.
DOI: 10.1016/j.jpowsour.2006.11.024
Google Scholar
[7]
E. Ferg, R.J. Gummow, A. de Kock , M.M. Thackeray, Spinel anodes for lithium-ion batteries, J. Electrochem. Soc. 141 (1994) L147-L150.
DOI: 10.1149/1.2059324
Google Scholar
[8]
F. Ronci, P. Reale, B. Scrosati, P. Panero, V.R. Albertini, P. Perfetti, et al., High-resolution in-situ structural measurements of the Li4/3Ti5/3O4 Zero-Strain, insertion material, J. Phys. Chem. B. 106 (2002) 3082-3086.
DOI: 10.1021/jp013240p
Google Scholar
[9]
H.M. Wu, I. Belharouak, H. Deng, A. Abouimrane, Y.K. Sun, K. Amine, Development of LiNi0. 5Mn1. 5O4/Li4Ti5O12 system with long cycle life, J. Electrochem. Soc. 156 (2009) A 1047-A1050.
Google Scholar
[10]
A. Rougier, K.A. Striebel, S.J. Wen, E.J. Cairns. Cyclic voltammetry of pulsed laser deposited LixMn2O4 thin films, J. Electrochem. Soc. 145 (1998) 2975-2980.
DOI: 10.1149/1.1838750
Google Scholar
[11]
M.V. Reddy, B. Pecquenard, P. Vinatier, A. Levasseur, Cyclic voltammetry and galvanostatic cycling characteristics of LiNiVO4 thin films during lithium insertion and re/de-insertion, Electrochem. Comm. 9 (2007) 409-415.
DOI: 10.1016/j.elecom.2006.10.011
Google Scholar
[12]
G. Leftheriotis, S. Papaefthimiou, P. Yianoulis, Dependence of the estimated diffusion coefficient of LixWO3 films on the scan rate of cyclic voltammetry experiments, Solid State Ionics. 178 (2007) 259-263.
DOI: 10.1016/j.ssi.2006.12.019
Google Scholar
[13]
D.Y.W. Yu, C. Fietzek, W. Weydanz, K. Donoue, T. Inoue, H. Kurokawa, et al., Study of LiFePO4 by cyclic voltammetry, J. Electrochem. Soc. 154 (2007) A253-A257.
DOI: 10.1149/1.2434687
Google Scholar
[14]
Y.H. Rho, K. Kanamura, Preparation of Li4/3Ti5/3O4 thin film electrodes by a PVP sol-gel coating method and their electrochemical properties, J. Electrochem. Soc. 151 (2004) A106-A110.
DOI: 10.1002/chin.200416018
Google Scholar
[15]
Y. Yu, J.L. Shui, C.H. Chen, Electrostatic spray deposition of spinel Li4Ti5O12 thin films for rechargeable lithium batteries, Solid State Commun. 135 (2005) 485-489.
DOI: 10.1016/j.ssc.2005.05.045
Google Scholar
[16]
C.L. Wang, Y.C. Liao, F.C. Hsu, N.H. Tai, M.K. Wu, Preparation and characterization of thin film Li4Ti5O12 electrodes by magnetron sputtering, J. Electrochem. Soc. 152 (2005) A653-A657.
DOI: 10.1149/1.1861193
Google Scholar
[17]
J. Xie, N. Imanishi, A. Hirano, M. Matsumura, Y. Takeda, O. Yamamoto, Kinetics investigation of a preferential (104) plane oriented LiCoO2 thin film prepared by RF magnetron sputtering, Solid State Ionics. 178 (2007) 1218-1224.
DOI: 10.1016/j.ssi.2007.06.007
Google Scholar
[18]
M.D. Levi, G. Salitra, B. Markovsky, H. Teller, D. Aurbach, U. Heider, et al., Solid-state electrochemical kinetics of Li-ion intercalation into Li1-xCoO2: Simultaneous application of electroanalytical techniques SSCV, PITT, and EIS, J. Electrochem. Soc. 146 (1999).
DOI: 10.1002/chin.199928014
Google Scholar
[19]
J. Li, E. Murphy, J. Winnick, P.A. Kohl, The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries, J. Power Sources. 102 (2001) 302-309.
DOI: 10.1016/s0378-7753(01)00820-5
Google Scholar
[20]
J.P. Christophersen, G.L. Hunt, C.D. Ho, D. Howell, Pulse resistance effects due to charging or discharging of high-power lithium-ion cells: A path dependence study, J. Power Sources. 173 (2007) 998-1005.
DOI: 10.1016/j.jpowsour.2007.08.025
Google Scholar
[21]
W. Lu, I. Belharouak, J. Liu, K. Amine, Electrochemical and Thermal Investigation of Li4/3Ti5/3O4 spinel, J. Electrochem Soc. 154A (2007) 114-118.
DOI: 10.1016/j.jpowsour.2007.06.199
Google Scholar
[22]
X.L. Yao, S. Xie, H.Q. Nian, C.H. Chen, Spinel Li4Ti5O12 as a reversible anode material down to 0 V, J. Alloys Compd. 465 (2008) 375-379.
DOI: 10.1016/j.jallcom.2007.10.113
Google Scholar
[23]
N. Takami, H. Inagaki, T. Kishi, Y. Harada, Y. Fujita, K. Hoshina, Electrochemical kinetics and safety of 2-volt class Li-ion battery system using lithium titanium oxide anode, J. Electrochem. Soc. 156A (2009) 128-132.
DOI: 10.1149/1.3043441
Google Scholar