First-Principles Studies on the Structures and Properties of Ti- and Zn-Substituted Mg2Ni Hydrogen Storage Alloys and their Hydrides

Article Preview

Abstract:

In order to study the improvement mechanism of transition metal elements on Mg-based hydrogen storage alloys, especially for the structures and properties of hydrogen storage alloy Mg2Ni, Ti and Zn substituted alloys Mg2-mMmNi,Mg2Ni1-nMn (M=Ti and Zn, m, n=0.1667), and their hydrides Mg2NiH4,Mg2-mMmNiH4,Mg2Ni1-nMnH4(M=Ti and Zn, m , n=0.125) have been investigated by first-principles. Through analyzing the results of the crystal structure, electron density distribution and density of states, the changes of structures and properties resulting from the adding of transition metal elements Ti and V of intermetallic Mg2Ni and its hydride Mg2NiH4 were investigated. The results showed that the addition of transition metal elements can reduce the stability of the Mg2Ni system to varying degrees and improve the dehydrogenation dynamics performance. Therefore, it may be considered that the substitution by transition metal elements in Mg-based hydrogen storage alloys is an effective technique to improve the thermodynamic behavior of hydrogenation/dehydrogenation in Mg-based hydrogen storage alloys (HSAs).

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 743-744)

Pages:

44-52

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydrogen storage: A review, Int. J. Hydrogen Energy. 32 (2007) 1121-1140.

DOI: 10.1016/j.ijhydene.2006.11.022

Google Scholar

[2] D. Chandra, J. Reilly, R. Chellappa, Metal hydrides for vehicular applications: The state of the art, J. Min. Met. Mat. S. 58 (2006) 26-32.

DOI: 10.1007/s11837-006-0005-0

Google Scholar

[3] U.C. Rodewald, B. Chevalier, R. Pottgen, Rare earth-transition metal-magnesium compounds - An overview, J. Solid State Chem. 180 (2007) 1720-1736.

DOI: 10.1016/j.jssc.2007.03.007

Google Scholar

[4] I.P. Jain, C. Lal, A. Jain, Hydrogen storage in Mg: A most promising material, Int. J. Hydrogen Energy. 35 (2010) 5133-5144.

DOI: 10.1016/j.ijhydene.2009.08.088

Google Scholar

[5] C.D. Yim, B.S. You, Y.S. Na, J.S. Bae, Hydriding properties of Mg-xNi alloys with different microstructures, Catal. Today. 120 (2007) 276-280.

DOI: 10.1016/j.cattod.2006.09.020

Google Scholar

[6] M. Tanniru, H.Y. Tien, F. Ebrahimi, Study of the dehydrogenation behavior of magnesium hydride, Scripta Mater. 63 (2010) 58-60.

DOI: 10.1016/j.scriptamat.2010.03.019

Google Scholar

[7] Y. Wu, N. Xing, Z.C. Lu, W. Han, S.X. Zhou, J.K. Solberg, et al, Microstructural evolution of melt-spun Mg-10Ni-2Mm hydrogen storage alloy, Trans. Nonferrous Met. Soc. China. 21 (2011) 121-126.

DOI: 10.1016/s1003-6326(11)60687-0

Google Scholar

[8] S. Aminorroaya, A. Ranjbar, Y.H. Cho, H.K. Liu, A.K. Dahle, Hydrogen storage properties of Mg-10 wt% Ni alloy co-catalysed with niobium and multi-walled carbon nanotubes, Int. J. Hydrogen Energy. 36 (2011) 571-579.

DOI: 10.1016/j.ijhydene.2010.08.103

Google Scholar

[9] L. Zaluski, A. Zaluska, P. Tessier, J.O. Ström-Olsen, R. Schulz, Catalytic effect of Pd on hydrogen absorption in mechanically alloyed Mg2Ni, LaNi5 and FeTi, J. Alloys Compd. 217 (1995) 295-300.

DOI: 10.1016/0925-8388(94)01358-6

Google Scholar

[10] Y. Zhang, Y. Qi, D. Zhao, S. Guo, Z. Ma, X. Wang, An investigation of hydrogen storage kinetics of melt-spun nanocrystalline and amorphous Mg2Ni-type alloys, J. Rare Earths. 29 (2011) 87-93.

DOI: 10.1016/s1002-0721(10)60409-7

Google Scholar

[11] M. Anik, Electrochemical hydrogen storage capacities of Mg2Ni and MgNi alloys synthesized by mechanical alloying, J. Alloys Compd. 491 (2010) 565-570.

DOI: 10.1016/j.jallcom.2009.11.004

Google Scholar

[12] H. Wang, L. Han, H. Hu, D.O. Northwood, The hydrolysis behaviour of Mg2Ni and Mg2NiH4 in water or a 6 M KOH solution and its application to Ni nanoparticles synthesis, J. Alloys Compd. 470 (2009) 539-543.

DOI: 10.1016/j.jallcom.2008.03.016

Google Scholar

[13] K. Nogita, S. Ockert, J. Pierce, M.C. Greaves, C.M. Gourlay, A.K. Dahle, Engineering the Mg-Mg2Ni eutectic transformation to produce improved hydrogen storage alloys, Int. J. Hydrogen Energy. 34 (2009) 7686-7691.

DOI: 10.1016/j.ijhydene.2009.07.036

Google Scholar

[14] D. Vyas, P. Jain, J. Khan, V. Kulshrestha, A. Jain, I.P. Jain, Effect of Cu catalyst on the hydrogenation and thermodynamic properties of Mg2Ni, Int. J. Hydrogen Energy. 405 (2010) 325-332.

DOI: 10.1016/j.ijhydene.2011.05.143

Google Scholar

[15] S. Orimo, H. Fujii, K. Ikeda, Notable hydriding properties of a nanostructured composite material of the Mg2Ni-H system synthesized by reactive mechanical grinding, Acta Mater. 45 (1997) 331-341.

DOI: 10.1016/s1359-6454(96)00158-9

Google Scholar

[16] S.K. Pandey, R.K. Singh, O.N. Srivastava, Investigations on hydrogenation behaviour of CNT admixed Mg2Ni, Int. J. Hydrogen Energy. 34 (2009) 9379-9384.

DOI: 10.1016/j.ijhydene.2009.09.077

Google Scholar

[17] S. Bouaricha, J.P. Dodelet, D. Guay, J. Huot, S. Boily, R. Schulz, Effect of carbon-containing compounds on the hydriding behavior of nanocrystalline Mg2Ni, J. Alloys Compd. 307 (2000) 226-233.

DOI: 10.1016/s0925-8388(00)00804-5

Google Scholar

[18] S. Aminorroaya, H.K. Liu, Y. Cho, A. Dahle, Microstructure and activation characteristics of Mg-Ni alloy modified by multi-walled carbon nanotubes, Int. J. Hydrogen Energy. 35 (2010) 4144-4153.

DOI: 10.1016/j.ijhydene.2010.02.078

Google Scholar

[19] C. Zlotea, M. Sahlberg, P. Moretto, Y. Andersson, Hydrogen sorption properties of a Mg-Y-Ti alloy, J. Alloys Compd. 489 (2010) 375-378.

DOI: 10.1016/j.jallcom.2009.09.085

Google Scholar

[20] Y. Zeng, K. Fan, X. Li, B. Xu, X. Gao, L. Meng, First-principles studies of the structures and properties of Al- and Ag-substituted Mg2Ni alloys and their hydrides, Int. J. Hydrogen Energy. 35 (2010) 10349-10358.

DOI: 10.1016/j.ijhydene.2010.07.131

Google Scholar

[21] P. Ferrin, S. Kandoi, A.U. Nilekar, M. Mavrikakis, Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study, Surf. Sci. 606 (2012) 679-89.

DOI: 10.1016/j.susc.2011.12.017

Google Scholar

[22] G.X. Li, X.W. Chen, J.D. Bai, Z.Q. Lan, J. Guo, 2010. Adsorption and Diffusion of H on Mg(2)Ni(100) Surface, Acta Phys-Chim. Sin. 26 (2010) 1448-1456.

Google Scholar

[23] L.W. Huang, O. Elkedim, R. Hamzaoui, First principles investigation of the substitutional doping of Mn in Mg(2)Ni phase and the electronic structure of Mg(3)MnNi(2) phase, J. Alloys Compd. 509 (2011) S328-S33.

DOI: 10.1016/j.jallcom.2010.08.129

Google Scholar

[24] M. Pozzo, D. Alfè, Hydrogen dissociation and diffusion on transition metal (Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces, Int. J. Hydrogen Energy. 34 (2009) 1922-(1930).

DOI: 10.1016/j.ijhydene.2008.11.109

Google Scholar

[25] H. Yang, H. Yuan, J. Ji, H. Sun, Z. Zhou, Y. Zhang, Characteristics of Mg2Ni0. 75M0. 25 (M=Ti, Cr, Mn, Fe, Co, Ni, Cu and Zn) alloys after surface treatment, J. Alloys Compd. 332 (2002) 640-644.

DOI: 10.1016/s0925-8388(01)01535-3

Google Scholar

[26] P. Zolliker, K. Yvon, J.D. Jorgensen, F.J. Rotella, Structural studies of the hydrogen storage material magnesium nickel hydride (Mg2NiH4) Monoclinic low-temperature structure, Inorg. Chem. 25 (1986) 3590-3593.

DOI: 10.1021/ic00240a012

Google Scholar

[27] J. Zhang, D.W. Zhou, J.S. Liu, First-principles investigation of Mg2CoH5 complex hydride, T. Nonferr. Metal. Soc. China. 19 (2009) 205-259.

Google Scholar