[1]
B. C. Sales, Thermoelectric materials - Smaller is cooler. Science, 295 (2002) 1248-1249.
Google Scholar
[2]
D. M. Rowe. CRC Handbook of Thermoelectrics. CRC Press. New York. (1995).
Google Scholar
[3]
D. M. Rowe. Handbook of Thermoelectrics. CRC. (1994).
Google Scholar
[4]
S. H. Yang, T. J. Zhu, et al., Nanostructures in high-performance (GeTe)x(AgSbTe2)100-x thermoelectric materials. Nanotechnology. 19 (2008) 245707.
Google Scholar
[5]
J. R. Salvador, et al., Transport and mechanical property evaluation of (AgSbTe)1-x(GeTe)x (x=0. 80, 0. 82, 0. 85, 0. 87, 0. 90). Journal of Solid State Chemistry, 182 (2009) 2088-(2095).
DOI: 10.1016/j.jssc.2009.05.024
Google Scholar
[6]
E. M. Levin, et al., Analysis of Ce- and Yb-Doped TAGS-85 Materials with Enhanced Thermoelectric Figure of Merit. Advanced Functional Materials, 21 (2011) 441-447.
DOI: 10.1002/adfm.201001307
Google Scholar
[7]
K. F. Hsu, S. Loo, Fu Guo, Wei Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis. Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit. Science. 303 (2004) 818-821.
DOI: 10.1002/chin.200417240
Google Scholar
[8]
B. A. Cook, M. J. Kramer, J. L. Harringa, M. K. Han, D. Y. Chung. M. G. Kanatzidis. Analysis of nanostructuring in high figure-of-merit Ag1-xPbmSbTe2+m thermoelectric materials. Advanced Functional Materials, 19 (2009) 1254-1259.
DOI: 10.1002/adfm.200801284
Google Scholar
[9]
J. Androulakis, et al., Nanostructuring and high thermoelectric efficiency in p-type Ag(Pb1-ySny)mSbTe2+m. Advanced Materials, 18 (2006) 1170.
DOI: 10.1002/adma.200502770
Google Scholar
[10]
R. Wolfe, J. H. Wernick, S. E. Haxzko, Anomalous Hall Effect in AgSbTe2, Journal of Applied Physics, 31 (1960) 1959-(1964).
Google Scholar
[11]
L. H. Ye, et al., First-principles study of the electronic, optical, and lattice vibrational properties of AgSbTe2. Physical Review B, 77 (2008) 245203.
Google Scholar
[12]
D. T. Morelli, V. Jovovic, and J. P. Heremans, Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. Physical Review Letters, 101 (2008) 035901.
Google Scholar
[13]
R. M. Marin, G. Brun, J. C. Tedenac. Phase equilibria in the Sb2Te3-Ag2Te system. Journal of Mateials Science, 20 (1985) 730-735.
DOI: 10.1007/bf01026548
Google Scholar
[14]
Y. Noda, I. A. Nishida, Y. S. Kang, M. Niino. Preparation and thermoelectric properties of AgSbTe2. 17th International Conference on Thermoelectrics, 1998 350-353.
Google Scholar
[15]
R. W. Armstrong, J. W. Faust, W. A. Tiller. A structure study of the compound AgSbTe2. Journal of Applied Physics, 31 (1960) 1954-(1959).
Google Scholar
[16]
Heng Wang, Jingfeng Li, Minmin Zou, Tao Sui. Synthesis and transport property of AgSbTe2 as a promising thermoelectric compound. Applied Physics Letters, 93 (2008) 202106.
DOI: 10.1063/1.3029774
Google Scholar
[17]
B. L. Du, et al., Enhanced thermoelectric performance and novel nanopores in AgSbTe2 prepared by melt spinning. Journal of Solid State Chemistry, 184 (2011) 109-114.
DOI: 10.1016/j.jssc.2010.10.036
Google Scholar
[18]
T. C. Su, et al., Enhanced thermoelectric performance of AgSbTe2 synthesized by high pressure and high temperature. Journal of Applied Physics, 105 (2009) 073713.
DOI: 10.1063/1.3106102
Google Scholar
[19]
H. A. Ma, et al., Preparation and transport properties of AgSbTe2 by high pressure and high temperature. Journal of Alloys and Compounds, 454 (2008) 415-418.
DOI: 10.1016/j.jallcom.2006.12.126
Google Scholar
[20]
V. Jovovic, and J. P. Heremans, Doping Effects on the Thermoelectric Properties of AgSbTe2. Journal of Electronic Materials, 38 (2009) 1504-1509.
DOI: 10.1007/s11664-009-0669-7
Google Scholar
[21]
V. Jovovic, and J. P. Heremans, Measurements of the energy band gap and valence band structure of AgSbTe2. Physical Review B, 77 (2008) 245204.
Google Scholar
[22]
S. S. Ragimov, and S. A. Aliev, alpha ->beta phase transition of Ag2Te in the AgSbTe2 alloy of the Ag-Sb-Te system. Inorganic Materials, 43 (2007) 1184-1186.
DOI: 10.1134/s0020168507110052
Google Scholar