The Effect of Cooling Process on the Microstructure and Electrical Transport Properties of AgSbTe2 Compound

Article Preview

Abstract:

AgSbTe2 compounds have been synthesized via melting and subsequent cooling processes. The effect of cooling process, from air-cooling, water quenching to liquid nitrogen-quenching, on the microstructure and the electrical transport properties of AgSbTe2 has been investigated by means of powder X-ray diffraction, electron microscope, electrical resistivity, and Hall coefficient measurements. It has been found that the cooling process has apparent influence on the microstructure and corresponding electrical properties. The phase components and morphology changed as the cooling process altered. The electrical resistivity and the Seebeck coefficient of the as-prepared samples increased from air-cooled to liquid nitrogen-quenched sample.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 743-744)

Pages:

59-64

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. C. Sales, Thermoelectric materials - Smaller is cooler. Science, 295 (2002) 1248-1249.

Google Scholar

[2] D. M. Rowe. CRC Handbook of Thermoelectrics. CRC Press. New York. (1995).

Google Scholar

[3] D. M. Rowe. Handbook of Thermoelectrics. CRC. (1994).

Google Scholar

[4] S. H. Yang, T. J. Zhu, et al., Nanostructures in high-performance (GeTe)x(AgSbTe2)100-x thermoelectric materials. Nanotechnology. 19 (2008) 245707.

Google Scholar

[5] J. R. Salvador, et al., Transport and mechanical property evaluation of (AgSbTe)1-x(GeTe)x (x=0. 80, 0. 82, 0. 85, 0. 87, 0. 90). Journal of Solid State Chemistry, 182 (2009) 2088-(2095).

DOI: 10.1016/j.jssc.2009.05.024

Google Scholar

[6] E. M. Levin, et al., Analysis of Ce- and Yb-Doped TAGS-85 Materials with Enhanced Thermoelectric Figure of Merit. Advanced Functional Materials, 21 (2011) 441-447.

DOI: 10.1002/adfm.201001307

Google Scholar

[7] K. F. Hsu, S. Loo, Fu Guo, Wei Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis. Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit. Science. 303 (2004) 818-821.

DOI: 10.1002/chin.200417240

Google Scholar

[8] B. A. Cook, M. J. Kramer, J. L. Harringa, M. K. Han, D. Y. Chung. M. G. Kanatzidis. Analysis of nanostructuring in high figure-of-merit Ag1-xPbmSbTe2+m thermoelectric materials. Advanced Functional Materials, 19 (2009) 1254-1259.

DOI: 10.1002/adfm.200801284

Google Scholar

[9] J. Androulakis, et al., Nanostructuring and high thermoelectric efficiency in p-type Ag(Pb1-ySny)mSbTe2+m. Advanced Materials, 18 (2006) 1170.

DOI: 10.1002/adma.200502770

Google Scholar

[10] R. Wolfe, J. H. Wernick, S. E. Haxzko, Anomalous Hall Effect in AgSbTe2, Journal of Applied Physics, 31 (1960) 1959-(1964).

Google Scholar

[11] L. H. Ye, et al., First-principles study of the electronic, optical, and lattice vibrational properties of AgSbTe2. Physical Review B, 77 (2008) 245203.

Google Scholar

[12] D. T. Morelli, V. Jovovic, and J. P. Heremans, Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. Physical Review Letters, 101 (2008) 035901.

Google Scholar

[13] R. M. Marin, G. Brun, J. C. Tedenac. Phase equilibria in the Sb2Te3-Ag2Te system. Journal of Mateials Science, 20 (1985) 730-735.

DOI: 10.1007/bf01026548

Google Scholar

[14] Y. Noda, I. A. Nishida, Y. S. Kang, M. Niino. Preparation and thermoelectric properties of AgSbTe2. 17th International Conference on Thermoelectrics, 1998 350-353.

Google Scholar

[15] R. W. Armstrong, J. W. Faust, W. A. Tiller. A structure study of the compound AgSbTe2. Journal of Applied Physics, 31 (1960) 1954-(1959).

Google Scholar

[16] Heng Wang, Jingfeng Li, Minmin Zou, Tao Sui. Synthesis and transport property of AgSbTe2 as a promising thermoelectric compound. Applied Physics Letters, 93 (2008) 202106.

DOI: 10.1063/1.3029774

Google Scholar

[17] B. L. Du, et al., Enhanced thermoelectric performance and novel nanopores in AgSbTe2 prepared by melt spinning. Journal of Solid State Chemistry, 184 (2011) 109-114.

DOI: 10.1016/j.jssc.2010.10.036

Google Scholar

[18] T. C. Su, et al., Enhanced thermoelectric performance of AgSbTe2 synthesized by high pressure and high temperature. Journal of Applied Physics, 105 (2009) 073713.

DOI: 10.1063/1.3106102

Google Scholar

[19] H. A. Ma, et al., Preparation and transport properties of AgSbTe2 by high pressure and high temperature. Journal of Alloys and Compounds, 454 (2008) 415-418.

DOI: 10.1016/j.jallcom.2006.12.126

Google Scholar

[20] V. Jovovic, and J. P. Heremans, Doping Effects on the Thermoelectric Properties of AgSbTe2. Journal of Electronic Materials, 38 (2009) 1504-1509.

DOI: 10.1007/s11664-009-0669-7

Google Scholar

[21] V. Jovovic, and J. P. Heremans, Measurements of the energy band gap and valence band structure of AgSbTe2. Physical Review B, 77 (2008) 245204.

Google Scholar

[22] S. S. Ragimov, and S. A. Aliev, alpha ->beta phase transition of Ag2Te in the AgSbTe2 alloy of the Ag-Sb-Te system. Inorganic Materials, 43 (2007) 1184-1186.

DOI: 10.1134/s0020168507110052

Google Scholar