Influence of Cu Diffusion on Electrical Transport Properties of Bi0.5Sb1.5Te3

Article Preview

Abstract:

Bi0.5Sb1.5Te3 nanoplates from gas induced reduction (GIR) strategy were hot-pressed into bulk materials for thermoelectric properties investigation. During the electrical conductivity and Seebeck coefficient measurements, we found that the Cu from Cu electrodes diffused into samples when the measurement temperature was above 600 K. The phase composition and fracture surface of the samples before and after Cu diffusion were examined by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). We found that the Cu diffusion resulted in the composition deviation and formation of impurity phase, Cu1.8Te. When the electrical conductivity and Seebeck coefficient of the samples were measured again but below 600 K, the samples showed different electrical transport behavior and had enhanced power factors.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 743-744)

Pages:

70-75

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.V. Faleev and F. Léonard. Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys. Rev. B 77( 2008) 214304.

DOI: 10.1103/physrevb.77.214304

Google Scholar

[2] L.P. Bulat, I.A. Drabkin, V.V. Karataev, V.B. Osvenskii, Y.N. Parkhomenko, D.A. Pshenai - Severin, G.I. Pivovarov and N. Yu. Tabachkova. Energy filtration of charge carriers in a nanostructured material based on bismuth telluride. Phys. Solid State. 53(2011).

DOI: 10.1134/s1063783411010082

Google Scholar

[3] M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J-P. Fleurial and P. Gogna. New directions for low- dimensional thermoelectric materials. Adv. Mater. 19(2007) 1043.

DOI: 10.1002/adma.200600527

Google Scholar

[4] J. Androulakis, K.F. Hsu, R. Pcionek, H.J. Kong, C. Uher, J.J. D'Angelo, A. Downey, T. Hogan and M.G. Kanatzidis. Nanostructuring and high thermoelectric efficiency in p-Type Ag(Pb1–ySny)mSbTe2+m. Adv. Mater. 18(2006) 1170.

DOI: 10.1002/adma.200502770

Google Scholar

[5] B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Mouto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen and Z.F. Ren. High- thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320(2008).

DOI: 10.1126/science.1156446

Google Scholar

[6] W.H. Xie, X.F. Tang Y.G. Yan, Q.J. Zhang and T.M. Tritt. High thermoelectric performance BiSbTe alloy with unique low-dimensional structure. J Appl. Phys. 105(2009) 113713.

DOI: 10.1063/1.3143104

Google Scholar

[7] G.Q. Zhang, B. Kirk, L.A. Jauregui, H.R. Yang, X.F. Xu, Y.P. Chen and Y. Wu. Rational synthesis of ultrathin n-Type Bi2Te3 nanowires with enhanced thermoelectric properties. Nano. Lett. 12(2012) 56.

DOI: 10.1021/nl202935k

Google Scholar

[8] R.J. Mehta, Y.L. Zhang, C. Karthik, B. Singh, R.W. Siegel, T. Borca- Tasciuc and G. Ramanath. A new class of doped nanobulk high- figure- ofmerit thermoelectrics by scalable bottom- up assembly. Nat. Mater. 11(2012) 233.

DOI: 10.1038/nmat3213

Google Scholar

[9] O. Beckman, P. Bergvall. Doping Properties of Bi2Te2. 7Se0. 3. Arkiv För Fysik 24(1963) 113.

Google Scholar

[10] T. E. Svechnikova, P. P. Konstatinov and G. T. Alekseeva. Physical properties of Bi2Te2. 85Se0. 15 single crystals doped with Cu, Cd, In, Ge, S, or Se. Inorg. Mater. 36(2000) 556.

DOI: 10.1007/bf02757952

Google Scholar

[11] T.A. McCarthy and H.J. Goldsmid. Electro-deposited copper in bismuth telluride. J. Phys. D: Appl. Phys. 3(1970) 697.

DOI: 10.1088/0022-3727/3/5/308

Google Scholar

[12] J. Bludska, S. Karamazov, J. Navratil, I. Navratil, I. Jakubec, and J. Horak. Copper intercalation into Bi2Te3 single crystals. Solid State Ionics. 171(2004) 251.

DOI: 10.1016/j.ssi.2004.03.010

Google Scholar

[13] J.L. Cui, L.D. Mao, W. Yang, X.B. Xu, D.Y. Chen and W.J. Xiu. Thermoelectric properties of Cu-doped n-type (Bi2Te3) (0. 9) - (Bi2- xCuxSe3) (0. 1) (x=0- 0. 2) alloys. J Solid State Chem. 180(2007) 3583.

DOI: 10.1016/j.jssc.2007.10.013

Google Scholar

[14] S. Fujimoto, S. Sano and T. Kajitami, Protections of the aging of n- type Bi- Te thermoelectric materials doped with Cu or Cu-halide. J Alloy Compd. 443(2007) 182.

DOI: 10.1016/j.jallcom.2007.03.037

Google Scholar

[15] W.S. Liu, Q.Y. Zhang, Y.C. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D.Z. Wang, G. Chen and Z.F. Ren. Thermoelectric Property Studies on Cu- Doped n- type CuxBi2Te2. 7Se0. 3 Nanocomposites Adv. Energy Mater. 1(2011) 577.

DOI: 10.1002/aenm.201100149

Google Scholar

[16] X. Wang, K.F. Cai, and H. Liu. Novel Gas-Induced-Reduction Route to Chalcogenide Nanostructures Taking Sb2Se3 as an Example. Cryst. Growth Des. 11(2011) 4759.

DOI: 10.1021/cg200071q

Google Scholar

[17] Y. Du, K.F. Cai, H. Li, and B.J. An. The Influence of Sintering Temperature on the Microstructure and Thermoelectric Properties of n- Type Bi2Te3-xSex Nanomaterials. J Electroan Mater. 40(2011) 518.

Google Scholar

[18] J. Yang, D.T. Morelli, G.P. Meisner, W. Chen, J.S. Dyck, and C. Uher, Effect of Sn substituting for Sb on the low-temperature transport properties of ytterbium-filled skutterudites. Phys. Rev. B 67(2003) 165207.

DOI: 10.1103/physrevb.67.165207

Google Scholar

[19] M.K. Han, K. Ahn, H.J. Kim, J.S. Rhyee and S.J. Kim. Formation of Cu nanoparticles in layered Bi2Te3 and their effect on ZT enhancement. J. Mater. Chem. 21(2011) 11365.

DOI: 10.1039/c1jm10163c

Google Scholar

[20] K.A. Yakshibawn, N.N. Mukhamadeeva and R.F. Almukhametov. Phase Transformations and Ionic Transport in the Cu2-sTe Superionic Conductor. Phys. Status. Solidi (a) 108(1988) 135.

DOI: 10.1002/pssa.2211080111

Google Scholar