[1]
D. Mohan, C.U. Pittman, Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water, J. Hazard Mater. 137 (2000) 762-811.
DOI: 10.1016/j.jhazmat.2006.06.060
Google Scholar
[2]
D.E. Kimbrough, Y. Cohen, A.M. Winer, L. Creelman, C.A. Mabuni, Critical assessment of chromium in the environment, Crit. Rev. Environ. Sci. Technol. 29 (1999) 1-46.
DOI: 10.1080/10643389991259164
Google Scholar
[3]
F. Gode, E. Pehlivan, Removal of chromium(III) from aqueous solutions using Lewatit S 100: the effect of pH, time, metal concentration and temperature, J. Hazard Mater. 136 (2006) 330-337.
DOI: 10.1016/j.jhazmat.2005.12.021
Google Scholar
[4]
G. Indira, B. Shi, T.S. Anirudhan, Polymer-grafted banana (Musa paradi-paradisiaca) stalk as an adsorbent for the removal of lead(II) and cadmium(II) ions from aqueous solutions: kinetic and equilibrium studies, J. Chem. Technol. Biotechno. 81 (2006).
DOI: 10.1002/jctb.1423
Google Scholar
[5]
D. Aderhold, C.J. Williams, R.G.J. Edyvean, The removal of heavy-metal ions by seaweeds and their derivatives, Bioresour Technol. 58 (1996) 1-6.
DOI: 10.1016/s0960-8524(96)00072-7
Google Scholar
[6]
M. Dkiky, M. Khamis, A. Manassra, et al., Selective adsorption of Cr(VI) in industrial wastewater using low cost abundantly available adsorbents, Adv. Environ. Res. 6 (2002) 533-540.
DOI: 10.1016/s1093-0191(01)00079-x
Google Scholar
[7]
K. Kadirvelu, C. Faur-Brasquet, P. Lecloirec, Removal of Cu(II), Pb(II), and Ni(II) by adsorption onto activated carbon cloths, Langmuir. 16 (2000) 8404-8409.
DOI: 10.1021/la0004810
Google Scholar
[8]
M.N. Rashed, Lead removal from contaminated water using mineral adsorbents, The Environmentalist. 21 (2001) 187-195.
Google Scholar
[9]
V.A. Borovinskii, E.V. Lyzlova, L.M. Ramazanov, Sorption of uranium on zirconium phosphate inorganic cation exchanger, Radiochemistry. 43 (2001) 84-86.
DOI: 10.1023/a:1012834424745
Google Scholar
[10]
F. Pagnanelli, M.P. Petrangeli, L. Toro, et al., Biosorption of metal ions on Arthrobacter sp. Biomass characterization and biosorption modeling, J. Environ. Sci. Technol. 34 (2000) 2773-2778.
DOI: 10.1021/es991271g
Google Scholar
[11]
S.E. Bailey, T.J. Olin, R.M. Bricka, et al., A review of potential low-cost sorbents for heavy metals, Water Res. 33 (1999) 2469-2479.
DOI: 10.1016/s0043-1354(98)00475-8
Google Scholar
[12]
T. Vasconcelosm, M. Azenha, V. Freitas, Role of polyphenols in copper complexation in red wine, J. Agric. Food Chem. 47 (1999) 2791-2796.
DOI: 10.1021/jf981032x
Google Scholar
[13]
H. Yamaguchi, R. Higasida, M. Higuchi, et al., Adsorption mechanism of heavy-metal ion by microspherical tannin resin, J. Appl. Polym. Sci. 45 (1992) 1463-1472.
DOI: 10.1002/app.1992.070450815
Google Scholar
[14]
X.P. Liao, H. Deng, Z.B. Lu, et al., Collagen Immobilized tannins and their adsorption for Cu(II), Chem. Ind. Forest Prod. 23 (2003) 11-16.
Google Scholar
[15]
X.P. Liao, Z.B. Lu, X. Du, et al., Collagen fiber immobilized Myrica rubra tannin and its adsorption to UO2(II), Envir. Sci. Technol. 38 (2004) 324-328.
DOI: 10.1021/es034369a
Google Scholar
[16]
L.K. Cabatingan, R.C. Agapay, J.L.L. Rakels, et al., Potential of biosorption for the recovery of chromate in industrial wastewaters, Ind. Eng. Chem. Res. 40 (2001) 2302-2309.
DOI: 10.1021/ie0008575
Google Scholar
[17]
A. Nakajrma, Y. Baba, Mechanism of hexavalent chromium adsorption by persimmon tannin gel, Water Res. 38 (2004) 2859-2864.
DOI: 10.1016/j.watres.2004.04.005
Google Scholar
[18]
X. Hou, X.P. Liao, B. Shi, Redox Adsorption of Cr(VI) by in Situ Immobilized Larch Tannin, Chem. Ind. Forest Prod. 27 (2007) 01-07.
Google Scholar
[19]
B. Shi, Y. Di, Plant Polyphenol, Science Press, Beijing, 2000, pp.124-126.
Google Scholar
[20]
B.J. Xu, T.R. Long, Contemporary Principle of Water and Wastewater Treatment, Higher Education Press, Beijing, 2001, pp.122-136.
Google Scholar
[21]
Y. Lin, L.J. Dai, Y. Pang, et al., Adsorption of Cr(VI) by in-situ immobilized black wattle bark, J. Safety Environ. 8 (2008) 26-28.
Google Scholar
[22]
J. Romero-Gonzalez, J.R. Peralta-Videa, E. Rodriguez, et al., Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass, J. Chem. Thermodyn. 37 (2005) 343-347.
DOI: 10.1016/j.jct.2004.09.013
Google Scholar
[23]
X. Huang, X.P. Liao, B. Shi, Hg(II) removal from aqueous solution by bayberry tannin-immobilized collagen fiber, J. Hazard Mater. 170 (2009) 1141-1148.
DOI: 10.1016/j.jhazmat.2009.05.086
Google Scholar
[24]
Y.S. Ho, Review of second-order models for adsorption systems, J. Hazard Mater. 136 (2006) 681-689.
Google Scholar
[25]
C.C. Cruz, A.C. Costa, C.A. Henriques, et al., Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. biomass, Bioresour Technol. 91 (2004) 249-257.
DOI: 10.1016/s0960-8524(03)00194-9
Google Scholar
[26]
M.J. Hynes, M.O. Coinceanainn, The kinetics and mechanism of the reaction of iron(III) with gallic acid, gallic acid methyl ester and catechin, J. Inorg. Biochem. 85 (2001) 131-142.
DOI: 10.1016/s0162-0134(01)00205-7
Google Scholar