Hydrothermal Synthesis and Photocatalytic Activity of TiO2@CNTs Nanocomposite

Article Preview

Abstract:

TiO2@CNTs nanocomposite was synthetized by a hydrothermal method at 453 K, using titanium tetrachloride as a precursor and nitrified CNTs as a support. The crystal phase, morphology, microstructure and element distribution of the sample were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscope (TEM), and scanning transmission electron microscopy (STEM-Mapping). The photocatalytic activity of the sample was measured by degrading methyl orange under UV illumination. The results showed that the titania particles in the shape of regular polygon decorate on the outer surface of CNTs evenly, and their sizes were about 7-20 nm. Moreover, photocatalytic activity of the nanocomposite was better than that of P25 Degussa and nitrated CNTs followed the apparent pseudo-first-order rate law. These results point out that synergistic effect exists between the titania and the carbon nanotubes in the nanocomposite.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 743-744)

Pages:

817-822

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X.B. Chen, S.S. Mao, Chem. Rev. 107 (2007) 2891-2959.

Google Scholar

[2] K. Woan, G. Pyrgiotakis, W. Sigmund, Adv. Mater. 21 (2009) 2233-2239.

Google Scholar

[3] A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C 1 (2000) 1-21.

Google Scholar

[4] D.M. He, L.X. Yang, S.Y. Kuang, et al., Electrochem. Commun. 9 (2007) 2467-2472.

Google Scholar

[5] K.E. O'Shea, E. Pernas, J. Saiers, Langmuir 15 (1999) 2071-(2076).

Google Scholar

[6] J. Arana, J.M. Dona-Rodriguez, E.T. Rendon, et al., Appl. Catal. B 44 (2003) 161-172.

Google Scholar

[7] T. Cordero, J.M. Chovelon, C. Duchamp, et al., Appl. Catal. B 73 (2007) 209-219.

Google Scholar

[8] B. Gao, G.Z. Chen, G. Li Puma. Appl. Catal. B 89 (2009) 503-509.

Google Scholar

[9] A. Jitianu, T. Cacciaguerra, R. Benoit, et al., Carbon 42 (2004) 1147-1151.

Google Scholar

[10] D. Beydoun, R. Amal, G.K. C Low, et al., J. Phys. Chem. B 104 (2000) 4387-4396.

Google Scholar

[11] M.N. Chong, S. Le, B. Jin, et al., Sep. Purif. Technol. 67 (2009) 355-363.

Google Scholar

[12] C. Aprile, A. Corma, H. Garcia, Phys. Chem. Chem. Phys. 10 (2008) 769-783.

Google Scholar

[13] S. Campidelli, C. Klumpp, A. Bianco, et al., J. Phys. Org. Chem. 19 (2006) 531-539.

Google Scholar

[14] E. Itoh, I. Suzuki, K. Miyairi, Jap. J. Appl. Phys. 44 (2005) 636-640.

Google Scholar

[15] C. Peng, G.A. Snook, D.J. Fray, et al, Chem. Comm. 44 (2006) 4629-4631.

Google Scholar

[16] S. Frank, P. Poncharal, Z.L. Wang, et al., Science 280 (1998) 17441746.

Google Scholar

[17] R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297 (2002) 787-792.

Google Scholar

[18] C. Dechakiatkrai, J. Chen, C. Lynam, et al., J. Electrochem. Soc. 154 (2007) A407-A411.

Google Scholar

[19] G.M. An, W.H. Ma, Z.Y. Sun, et al, Carbon, 45 (2007) 1795-1801.

Google Scholar

[20] H. Wang, H.L. Wang, W.F. Jiang, Water Res. 43 (2009) 204-210.

Google Scholar

[21] Y. Lin, C. Ferronato, N. Deng, et al., Appl. Catal. B 88 (2009) 32-41.

Google Scholar

[22] Z. Song, J. Hrbek, R. Osgood, Nano Lett. 5(2005) 1327-1332.

Google Scholar

[23] H. Yu, X. Quan, S. Chen, et al., J. Phys. Chem. C 111 (2007) 12987-12991.

Google Scholar

[24] A. Kongkanand, P.V. Kamat, ACS Nano 1 (2007) 13-21.

Google Scholar