[1]
J. Nagamatsu, N. Nakagawa, T. Muranka, Y. Zeniranim, J. Akimitsu, Superconductivity at 39 K in magnesiumdiboride, Nature. 410 (2001) 63-64.
Google Scholar
[2]
X.H. Li, X.J. Du, M. Qiu, Y.W. Ma, L.Y. Xiao, Design and experimental demonstration of an MgB2 based 1. 5 T MRI test magnet. Physica C. 463-465 (2007) 1338-1341.
DOI: 10.1016/j.physc.2007.02.052
Google Scholar
[3]
A. Serquis, L. Civale, J.Y. Coulter, D. LHammon, X.Z. Liao, Y.T. Zhu, D.E. Peterson, F.M. Mueller, V.F. Nesterenko, S.S. Indrakanti, Large field generation with a hot isostatically pressed powder-in-tube MgB2 coil at 25 K, Supercond. Sci. Technol. 17 (2004).
DOI: 10.1088/0953-2048/17/10/l01
Google Scholar
[4]
X. Xu, S.X. Dou, X.L. Wang, J.H. Kim, J.A. Stride , M. Choucair, W.K. Yeoh, R.K. Zheng, S.P. Ringer, Graphene doping to enhance the flux pinning and supercurrent carrying ability of a magnesium diboride superconductor, Supercond. Sci. Technol. 23 (2010).
DOI: 10.1088/0953-2048/23/8/085003
Google Scholar
[5]
J.H. Kim, S.X. Dou, A. Matsumoto, S. Choi, T. Kiyoshi, H. Kumakura, Correlation between critical current density and n-value in MgB2/Nb/Monel superconductor wires, Physica C. 470 (2010) 1207-1210.
DOI: 10.1016/j.physc.2010.05.075
Google Scholar
[6]
N. Varghese, K. Vinod, M.K. Chattopadhyay, S.B. Roy, U. Syamaprasad, Effect of combined addition of nano-SiC and nano-Ho2O3 on the in-field critical current density of MgB2 superconductor, J. Appl. Phy. 107 (2010) 013907-013911.
DOI: 10.1063/1.3275504
Google Scholar
[7]
M. Razeti, S. Angius, L. Bertora, D. Damiani, R. Marabotto, M. Modica, D. Nardelli, M. Perrella, M. Tassisto, Construction and Operation of Cryogen Free MgB2 Magnets for Open MRI Systems, IEEE Trans. Appl. Supercond. 18 (2008) 882-886.
DOI: 10.1109/tasc.2008.920661
Google Scholar
[8]
S.X. Dou, E.W. Collings, O. Shcherbakova, A. Shcherbakov, Aluminium-stabilized magnesium diboride—a new light-weight superconductor, Supercond. Sci. Technol. 9 (2006) 333-337.
DOI: 10.1088/0953-2048/19/4/015
Google Scholar
[9]
K. Katagiri, R. Takaya, K. Kasaba, K. Tachikawa, Y. Yamada, S. Shimura, N. Koshizuka, K. Watanabe, Stress–strain effects on powder-in-tubeMgB2 tapes and wires, Supercond. Sci. Technol. (18) 2005 S351-S355.
DOI: 10.1088/0953-2048/18/12/021
Google Scholar
[10]
K. Katagiri, K. Kasaba, Y. Shoji, D. Yamakage, T. Obara, S. Shimura, N. Koshizuka, K. Watanabe, Stress/strain characteristics of Cu-alloy sheath MgB2 superconducting wires. Cryogenics. 47 (2007) 220-224.
DOI: 10.1016/j.cryogenics.2007.01.005
Google Scholar
[11]
P. Kováč, I. Hušek, T. Melišek, L. Kopera, M. Reissner, Cu stabilized MgB2 composite wire with an NbTi barrier, Supercond. Sci. Technol. 23 (2010) 025014-025021.
DOI: 10.1088/0953-2048/23/2/025014
Google Scholar
[12]
P. Kováč, I. Hušek, E. Dobročka, T. Melišek, W. Haessler, M. Herrmann, MgB2 tapes made of mechanically alloyed precursor powder in different metallic sheaths, Supercond. Sci. Technol. 21 (2008) 015004-015009.
DOI: 10.1088/0953-2048/21/01/015004
Google Scholar
[13]
T. Machi, S. Shimura, N. Koshizuka, M. Murakami, Fabrication of MgB2 superconducting wire by in-situ PIT method, Physica C. 392-396 (2003) 1039-1042.
DOI: 10.1016/s0921-4534(03)01160-2
Google Scholar
[14]
B.H. Jun, N.K. Kim, K.S. Tan, C.J. Kim, Enhanced critical current properties of in situ processed MgB2 wires using milled boron powder and low temperature solid-state reaction, J. Alloys Compd. 492 (2010) 446-451.
DOI: 10.1016/j.jallcom.2009.11.134
Google Scholar
[15]
S. Shimura, T. Machi, M. Murakami, N. Koshizuka, K. Mochizuki, I. Ishikawa, N. Shibata, Copper sheath MgB2 wires fabricated by an in situ PIT method, Physica C. 412-414 (2004) 1179-1183.
DOI: 10.1016/j.physc.2004.02.222
Google Scholar
[16]
S. Hata, T. Yoshidome, H. Sosiati, Y. Tomokiyo, N. Kuwano, A. Matsumoto, H. Kitaguchi, H. Kumakura, Microstructures of MgB2/Fe tapes fabricated by an in situ powder-in-tube method using MgH2 as a precursor powder, Supercond. Sci. Technol. 19 (2006).
DOI: 10.1088/0953-2048/19/2/002
Google Scholar
[17]
C.H. Jiang, H. Kumakura, Stoichiometry dependence of the critical current density in pure and nano-SiC doped MgB2/Fe tapes, Physica C 451 (2007) 71-76.
DOI: 10.1016/j.physc.2006.11.001
Google Scholar
[18]
T. Nakane, C.H. Jiang, T. Mochiku, H. Fujii, T. Kuroda, H. Kumakura, Effect of SiC nanoparticle addition on the critical current density of MgB2 tapes fabricated from MgH2, B and MgB2 powder mixtures, Supercond. Sci. Technol. 18 (2005) 1337-1341.
DOI: 10.1088/0953-2048/18/10/015
Google Scholar
[19]
M.D. Sumption, M. Bhatia, M. Rindfleisch, M. Tomsic, S. Soltanian, S.X. Dou, E.W. Collings, Large upper critical field and irreversibility field in MgB2 wires with SiC additions, Appl. Phys. Lett. 86 (2005) 092507-092509.
DOI: 10.1063/1.1872210
Google Scholar
[20]
K. Yamamoto, K. Osamura, S. Balamurugan, T. Nakamura, T. Hoshino, I. Muta, Mechanical and superconducting properties of PIT-processed MgB2 wire after heat treatment, Supercond. Sci. Technol. 16 (2003) 1052-1058.
DOI: 10.1088/0953-2048/16/9/315
Google Scholar
[21]
I. Hušek, P. Kováč, H. Jones, Tensile stress applied to NbTi, Nb3Sn, Bi-2223 and MgB2 composite superconductors at room temperature, Supercond. Sci. Technol. 17 (2004) 1411-1414.
DOI: 10.1088/0953-2048/17/12/009
Google Scholar
[22]
P. Kováč, I. Hušek, T. Melišek, L. Kopera, M. Reissner, Stainless steel reinforced multi-core MgB2 wire subjected to variable deformations, heat treatments and mechanical stressing, Supercond. Sci. Technol. 23 (2010) 065010-065016.
DOI: 10.1088/0953-2048/23/6/065010
Google Scholar
[23]
M.Y. Fu, J.X. Chen, Z.K. Jiao, H. Kumakura, K. Togano, L.R. Ding, Y. Zhang, Z.Y. Chen, H.M. Han, J.L. Chen, Mechanical properties and bending strain effect on Cu-Ni sheathed MgB2 superconducting tape, Physica C 406 (2004) 53-57.
DOI: 10.1016/j.physc.2004.02.179
Google Scholar
[24]
M. Usta, The characterization of borided pure niobium, Surf. Coat. Tech. 194 (2005) 251-255.
Google Scholar
[25]
M. Tomsic, M. Rindfleisch, J.J. Yue, K. McFadden, D. Doll, J. Phillips, et al. Development of magnesium diboride (MgB2) wires and magnets using in situ strand fabrication method, Physica C 456 (2007) 203-208.
DOI: 10.1016/j.physc.2007.01.009
Google Scholar