Mechanical and Superconducting Properties of NbTi Reinforced MgB2 Wires

Article Preview

Abstract:

The strengthening abilities of NbTi for 6-filamentary MgB1.9(TiC)0.08/Nb/Cu wires and the electrical properties have been investigated. The NbTi reinforcing core was suitable for manufacturing MgB2 wires. It was observed that with the sintering temperature increasing, the yield strength decreased. The plasticity improved while the strength changed little by introduction of intermediate annealing during the cold processing of the wires. The transport properties of the wire degraded to some degree due to intermediate annealing. The mechanical properties have already met the application requirements of superconducting magnets in low field with the critical engineering current Ic above 90 A (Jce exceeding 7.9×103 A/cm2) at 35 K in self-field.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

173-178

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Nagamatsu, N. Nakagawa, T. Muranka, Y. Zeniranim, J. Akimitsu, Superconductivity at 39 K in magnesiumdiboride, Nature. 410 (2001) 63-64.

Google Scholar

[2] X.H. Li, X.J. Du, M. Qiu, Y.W. Ma, L.Y. Xiao, Design and experimental demonstration of an MgB2 based 1. 5 T MRI test magnet. Physica C. 463-465 (2007) 1338-1341.

DOI: 10.1016/j.physc.2007.02.052

Google Scholar

[3] A. Serquis, L. Civale, J.Y. Coulter, D. LHammon, X.Z. Liao, Y.T. Zhu, D.E. Peterson, F.M. Mueller, V.F. Nesterenko, S.S. Indrakanti, Large field generation with a hot isostatically pressed powder-in-tube MgB2 coil at 25 K, Supercond. Sci. Technol. 17 (2004).

DOI: 10.1088/0953-2048/17/10/l01

Google Scholar

[4] X. Xu, S.X. Dou, X.L. Wang, J.H. Kim, J.A. Stride , M. Choucair, W.K. Yeoh, R.K. Zheng, S.P. Ringer, Graphene doping to enhance the flux pinning and supercurrent carrying ability of a magnesium diboride superconductor, Supercond. Sci. Technol. 23 (2010).

DOI: 10.1088/0953-2048/23/8/085003

Google Scholar

[5] J.H. Kim, S.X. Dou, A. Matsumoto, S. Choi, T. Kiyoshi, H. Kumakura, Correlation between critical current density and n-value in MgB2/Nb/Monel superconductor wires, Physica C. 470 (2010) 1207-1210.

DOI: 10.1016/j.physc.2010.05.075

Google Scholar

[6] N. Varghese, K. Vinod, M.K. Chattopadhyay, S.B. Roy, U. Syamaprasad, Effect of combined addition of nano-SiC and nano-Ho2O3 on the in-field critical current density of MgB2 superconductor, J. Appl. Phy. 107 (2010) 013907-013911.

DOI: 10.1063/1.3275504

Google Scholar

[7] M. Razeti, S. Angius, L. Bertora, D. Damiani, R. Marabotto, M. Modica, D. Nardelli, M. Perrella, M. Tassisto, Construction and Operation of Cryogen Free MgB2 Magnets for Open MRI Systems, IEEE Trans. Appl. Supercond. 18 (2008) 882-886.

DOI: 10.1109/tasc.2008.920661

Google Scholar

[8] S.X. Dou, E.W. Collings, O. Shcherbakova, A. Shcherbakov, Aluminium-stabilized magnesium diboride—a new light-weight superconductor, Supercond. Sci. Technol. 9 (2006) 333-337.

DOI: 10.1088/0953-2048/19/4/015

Google Scholar

[9] K. Katagiri, R. Takaya, K. Kasaba, K. Tachikawa, Y. Yamada, S. Shimura, N. Koshizuka, K. Watanabe, Stress–strain effects on powder-in-tubeMgB2 tapes and wires, Supercond. Sci. Technol. (18) 2005 S351-S355.

DOI: 10.1088/0953-2048/18/12/021

Google Scholar

[10] K. Katagiri, K. Kasaba, Y. Shoji, D. Yamakage, T. Obara, S. Shimura, N. Koshizuka, K. Watanabe, Stress/strain characteristics of Cu-alloy sheath MgB2 superconducting wires. Cryogenics. 47 (2007) 220-224.

DOI: 10.1016/j.cryogenics.2007.01.005

Google Scholar

[11] P. Kováč, I. Hušek, T. Melišek, L. Kopera, M. Reissner, Cu stabilized MgB2 composite wire with an NbTi barrier, Supercond. Sci. Technol. 23 (2010) 025014-025021.

DOI: 10.1088/0953-2048/23/2/025014

Google Scholar

[12] P. Kováč, I. Hušek, E. Dobročka, T. Melišek, W. Haessler, M. Herrmann, MgB2 tapes made of mechanically alloyed precursor powder in different metallic sheaths, Supercond. Sci. Technol. 21 (2008) 015004-015009.

DOI: 10.1088/0953-2048/21/01/015004

Google Scholar

[13] T. Machi, S. Shimura, N. Koshizuka, M. Murakami, Fabrication of MgB2 superconducting wire by in-situ PIT method, Physica C. 392-396 (2003) 1039-1042.

DOI: 10.1016/s0921-4534(03)01160-2

Google Scholar

[14] B.H. Jun, N.K. Kim, K.S. Tan, C.J. Kim, Enhanced critical current properties of in situ processed MgB2 wires using milled boron powder and low temperature solid-state reaction, J. Alloys Compd. 492 (2010) 446-451.

DOI: 10.1016/j.jallcom.2009.11.134

Google Scholar

[15] S. Shimura, T. Machi, M. Murakami, N. Koshizuka, K. Mochizuki, I. Ishikawa, N. Shibata, Copper sheath MgB2 wires fabricated by an in situ PIT method, Physica C. 412-414 (2004) 1179-1183.

DOI: 10.1016/j.physc.2004.02.222

Google Scholar

[16] S. Hata, T. Yoshidome, H. Sosiati, Y. Tomokiyo, N. Kuwano, A. Matsumoto, H. Kitaguchi, H. Kumakura, Microstructures of MgB2/Fe tapes fabricated by an in situ powder-in-tube method using MgH2 as a precursor powder, Supercond. Sci. Technol. 19 (2006).

DOI: 10.1088/0953-2048/19/2/002

Google Scholar

[17] C.H. Jiang, H. Kumakura, Stoichiometry dependence of the critical current density in pure and nano-SiC doped MgB2/Fe tapes, Physica C 451 (2007) 71-76.

DOI: 10.1016/j.physc.2006.11.001

Google Scholar

[18] T. Nakane, C.H. Jiang, T. Mochiku, H. Fujii, T. Kuroda, H. Kumakura, Effect of SiC nanoparticle addition on the critical current density of MgB2 tapes fabricated from MgH2, B and MgB2 powder mixtures, Supercond. Sci. Technol. 18 (2005) 1337-1341.

DOI: 10.1088/0953-2048/18/10/015

Google Scholar

[19] M.D. Sumption, M. Bhatia, M. Rindfleisch, M. Tomsic, S. Soltanian, S.X. Dou, E.W. Collings, Large upper critical field and irreversibility field in MgB2 wires with SiC additions, Appl. Phys. Lett. 86 (2005) 092507-092509.

DOI: 10.1063/1.1872210

Google Scholar

[20] K. Yamamoto, K. Osamura, S. Balamurugan, T. Nakamura, T. Hoshino, I. Muta, Mechanical and superconducting properties of PIT-processed MgB2 wire after heat treatment, Supercond. Sci. Technol. 16 (2003) 1052-1058.

DOI: 10.1088/0953-2048/16/9/315

Google Scholar

[21] I. Hušek, P. Kováč, H. Jones, Tensile stress applied to NbTi, Nb3Sn, Bi-2223 and MgB2 composite superconductors at room temperature, Supercond. Sci. Technol. 17 (2004) 1411-1414.

DOI: 10.1088/0953-2048/17/12/009

Google Scholar

[22] P. Kováč, I. Hušek, T. Melišek, L. Kopera, M. Reissner, Stainless steel reinforced multi-core MgB2 wire subjected to variable deformations, heat treatments and mechanical stressing, Supercond. Sci. Technol. 23 (2010) 065010-065016.

DOI: 10.1088/0953-2048/23/6/065010

Google Scholar

[23] M.Y. Fu, J.X. Chen, Z.K. Jiao, H. Kumakura, K. Togano, L.R. Ding, Y. Zhang, Z.Y. Chen, H.M. Han, J.L. Chen, Mechanical properties and bending strain effect on Cu-Ni sheathed MgB2 superconducting tape, Physica C 406 (2004) 53-57.

DOI: 10.1016/j.physc.2004.02.179

Google Scholar

[24] M. Usta, The characterization of borided pure niobium, Surf. Coat. Tech. 194 (2005) 251-255.

Google Scholar

[25] M. Tomsic, M. Rindfleisch, J.J. Yue, K. McFadden, D. Doll, J. Phillips, et al. Development of magnesium diboride (MgB2) wires and magnets using in situ strand fabrication method, Physica C 456 (2007) 203-208.

DOI: 10.1016/j.physc.2007.01.009

Google Scholar