A Review of the Ion Beam Assisted Deposition Researches towards Industrialization for the Second Generation High Temperature Superconducting Wire Fabrication

Article Preview

Abstract:

on beam assisted deposition (IBAD) is an important technique to fabricate the second generation high temperature superconducting (2G HTS) wires. Among the fabrication routes of 2G HTS long wires, IBAD route achieved the best performance in recent years. IBAD was adopted in this field in 1991 to obtain biaxially textured buffer layers, which helped to deposit high quality YBCO superconducting films on metallic substrates for the first time. Series of experimental and industrial researches on IBAD were carried out by many groups worldwide. And in the researches lasting for over two decades, the focused material for IBAD was changed from Yttria-Stabilized Zirconia (YSZ), Gd2Zr2O7 (GZO) to MgO. In this paper, the research progresses and the main achievements were briefly reviewed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

225-232

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Dimos, P. Chaudhari, J. Mannhart, et al., Orientation dependence of grain-boundary critical currents in YBa2Cu3O7-delta bicrystals, Phys. Rev. Lett. 61 (1988) 219-222.

Google Scholar

[2] Y. Iijima, N. Tanabe, Y. Ikeno, et al., Biaxially aligned YBa2Cu3O7-x thin film tapes, Physica C 185-189 (1991) 1959-(1960).

DOI: 10.1016/0921-4534(91)91104-c

Google Scholar

[3] Y. Iijima, N. Tanabe, O. Kohno, et al., In-plane aligned YBa/sub 2/Cu/sub 3/O/sub 7-x/ thin films deposited on polycrystalline metallic substrates, Appl. Phys. Lett. 60 (1992) 769-771.

DOI: 10.1063/1.106514

Google Scholar

[4] Y. Iijima, K. Onabe, N. Futaki, et al., In-plane texturing control of Y-Ba-Cu-O thin films on polycrystalline substrates by ion-beam-modified intermediate buffer layers, IEEE Trans. Appl. Supercond. 3 (1993) 1510-1515.

DOI: 10.1109/77.233380

Google Scholar

[5] H. Freyhardt, J. Hoffmann, J. Wiesmann, et al., YBaCuO thick films on planar and curved technical substrates, IEEE Trans. Appl. Supercond. 7 (1997) 1426-1431.

DOI: 10.1109/77.620839

Google Scholar

[6] Y. Mao, B. Jiang, C. Ren, et al., Low energy ion beam assisted deposition of biaxially aligned yttria stabilized zirconia films on polycrystalline Ni-Cr alloy, Nucl Instrum Meth B 135 (1998) 492-500.

DOI: 10.1016/s0168-583x(97)00655-1

Google Scholar

[7] X. Wu, S. Foltyn, P. Arendt, et al., High-Current Yba2cu3o7-Delta Thick-Films on Flexible Nickel Substrates with Textured Buffer Layers, Appl. Phys. Lett. 65 (1994) 1961-(1963).

DOI: 10.1063/1.112830

Google Scholar

[8] X. Wu, S. Foltyn, P. Arendt, et al., Preparation of High-Quality Yba2cu3o7-Delta Thick-Films on Flexible Ni-Based Alloy Substrates with Textured Buffer Layers, IEEE Trans. Appl. Supercond. 5 (1995) 2001-(2006).

DOI: 10.1109/77.402979

Google Scholar

[9] X. Wu, S. Foltyn, P. Arendt, et al., Properties of Yba2cu3o7-Delta Thick-Films on Flexible Buffered Metallic Substrates, Appl. Phys. Lett. 67 (1995) 2397-2399.

DOI: 10.1063/1.114559

Google Scholar

[10] Y. Iijima, M. Hosaka, N. Tanabe, et al., Biaxial alignment control of YBa2Cu3O7-x films on random Ni-based alloy with textured yttrium stabilized-zirconia films formed by ion-beam-assisted deposition, J. Mater. Res. 12 (1997) 2913-2923.

DOI: 10.1557/jmr.1997.0386

Google Scholar

[11] Y. Iijima, M. Hosaka, N. Tanabe, et al., Growth structure of yttria-stabilized-zirconia films during off-normal ion-beam-assisted deposition, J. Mater. Res. 13 (1998) 3106-3113.

DOI: 10.1557/jmr.1998.0423

Google Scholar

[12] Y. Iijima, M. Kimura, T. Saitoh, et al., Development of Y-123-coated conductors by IBAD process, Physica C 335 (2000) 15-19.

DOI: 10.1016/s0921-4534(00)00131-3

Google Scholar

[13] P. Arendt, S. Foltyn, J. Groves, et al., YBCO/YSZ coated conductors on flexible Ni alloy substrates, Appl. Supercond. 4 (1996) 429-434.

DOI: 10.1016/s0964-1807(97)00041-0

Google Scholar

[14] S. Foltyn, P. Arendt, P. Dowden, et al., High-T-c coated conductors - Performance of meter-long YBCO/IBAD flexible tapes, IEEE Trans. Appl. Supercond. 9 (1999) 1519-1522.

DOI: 10.1109/77.784682

Google Scholar

[15] S. Foltyn, P. Arendt, R. DePaula, et al., Development of meter-long YBCO coated conductors produced by ion beam assisted deposition and pulsed laser deposition, Physica C 341 (2000) 2305-2308.

DOI: 10.1016/s0921-4534(00)01020-0

Google Scholar

[16] V. Selvamanickam, H. Lee, Y. Li, et al., Scale up of high-performance Y-Ba-Cu-O coated conductors, IEEE Trans. Appl. Supercond. 13 (2003) 2492-2495.

DOI: 10.1109/tasc.2003.811829

Google Scholar

[17] X. Xiong, K. Lenseth, J. Reeves, et al., High throughput processing of long-length IBAD MgO and epi-buffer templates at SuperPower, IEEE Trans. Appl. Supercond. 17 (2007) 3375-3378.

DOI: 10.1109/tasc.2007.899450

Google Scholar

[18] Y. Iijima, K. Kakimoto, K. Takeda, Long length ion-beam-assisted deposition template films for Y-123 coated conductors, Physica C 357 (2001) 952-958.

DOI: 10.1016/s0921-4534(01)00450-6

Google Scholar

[19] Y. Iijima, K. Kakimoto, M. Kimura, et al., Reel to reel continuous formation of Y-123 coated conductors by IBAD and PLD method, IEEE Trans. Appl. Supercond. 11 (2001) 2816-2821.

DOI: 10.1109/77.919649

Google Scholar

[20] Y. Iijima, K. Kakimoto, K. Takeda, Ion beam assisted growth of fluorite type oxide template films for biaxially textured HTSC coated conductors, IEEE Trans. Appl. Supercond. 11 (2001) 3457-3460.

DOI: 10.1109/77.919807

Google Scholar

[21] Y. Iijima, K. Kakimoto, T. Saitoh, et al., Temperature and RE elemental dependence for ZrO2-RE2O3 oxide film growth by IBAD method, Physica C 378 (2002) 960-964.

DOI: 10.1016/s0921-4534(02)01577-0

Google Scholar

[22] K. Kakimoto, Y. Iijima, T. Saitoh, Development of Y-123 coated conductors by ion-beam-assisted deposition, Physica C 378 (2002) 937-943.

DOI: 10.1016/s0921-4534(02)01572-1

Google Scholar

[23] K. Kakimoto, Y. Iijima, T. Saitoh, Fabrication of long-Y123 coated conductors by combination of IBAD and PLD, Physica C 392 (2003) 783-789.

DOI: 10.1016/s0921-4534(03)01129-8

Google Scholar

[24] Y. Iijima, K. Kakimoto, Y. Sutoh, et al., Development of 100-m long Y-123 coated conductors processed by IBAD/PLD method, Physica C 412-14 (2004) 801-806.

DOI: 10.1016/j.physc.2003.12.075

Google Scholar

[25] Y. Iijima, K. Kakimoto, Y. Sutoh, et al., Development of long Y-123 coated conductors by ion-beam-assisted-deposition and the pulsed-laser-deposition method, Supercond. Sci. Technol. 17 (2004) S264-S268.

DOI: 10.1088/0953-2048/17/5/033

Google Scholar

[26] S. Miyata, T. Watanabe, T. Muroga, et al., Effects of assisting and sputtering beams in IBAD method for a long tape fabrication, Physica C 412-14 (2004) 824-828.

DOI: 10.1016/j.physc.2003.12.073

Google Scholar

[27] Y. Iijima, K. Kakimoto, Y. Sutoh, et al., Development of long Y-123 coated conductors for coil-applications by IBAD/PLD method, IEEE Trans. Appl. Supercond. 15 (2005) 2590-2595.

DOI: 10.1109/tasc.2005.847662

Google Scholar

[28] Y. Yamada, T. Muroga, H. Iwai, et al., Present status and perspective of IBAD and PLD system in SRL and self-epitaxy in PLD-CeO2 on IBAD seed layer, Physica C 392 (2003) 777-782.

DOI: 10.1016/s0921-4534(03)01211-5

Google Scholar

[29] T. Muroga, T. Watanabe, S. Miyata, et al., Rapid fabrication of highly textured CeO2 cap layer on MAD tape for YBCO coated conductor, Physica C 412-14 (2004) 807-812.

DOI: 10.1016/j.physc.2004.02.201

Google Scholar

[30] Y. Yamada, T. Watanabe, T. Muroga, et al., Rapid production of buffered substrates and long length coated conductor development using IBAD, PLD methods and Self-Epitaxial, ceria buffer, IEEE Trans. Appl. Supercond. 15 (2005) 2600-2603.

DOI: 10.1109/tasc.2005.847666

Google Scholar

[31] Y. Sutoh, K. Kakimoto, Y. Iijima, et al., Preparation of second buffer layers on IBAD tapes by PLD, Physica C 412 (2004) 829-832.

DOI: 10.1016/j.physc.2003.12.083

Google Scholar

[32] Y. Iijima, N. Kaneko, S. Hanyu, et al., Development of IBAD/PLD process for long length Y-123 conductors in Fujikura, Physica C 445 (2006) 509-514.

DOI: 10.1016/j.physc.2006.04.045

Google Scholar

[33] S. Hanyu, Y. Iijima, H. Fuji, et al., Development of 500 m-length IBAD-Gd2Zr2O7 film for Y-123 coated conductors, Physica C 463 (2007) 568-570.

DOI: 10.1016/j.physc.2007.03.460

Google Scholar

[34] S. Hanyu, T. Miura, Y. Lijima, et al., GZO/MgO IBAD-buffer layers for coated conductors, Physica C 468 (2008) 1591-1593.

DOI: 10.1016/j.physc.2008.05.079

Google Scholar

[35] C. Wang, K. Do, M. Beasley, et al., Deposition of in-plane textured MgO on amorphous Si3N4 substrates by ion-beam-assisted deposition and comparisons with ion-beam-assisted deposited yttria-stabilized-zirconia, Appl. Phys. Lett. 71 (1997).

DOI: 10.1063/1.120227

Google Scholar

[36] J. Groves, P. Arendt, S. Foltyn, et al., Ion-beam assisted deposition of bi-axially aligned MgO template films for YBCO coated conductors, IEEE Trans. Appl. Supercond. 9 (1999) 1964-(1966).

DOI: 10.1109/77.784846

Google Scholar

[37] J. Willis, P. Arendt, S. Foltyn, et al., Advances in YBCO-coated conductor technology, Physica C 335 (2000) 73-77.

DOI: 10.1016/s0921-4534(00)00146-5

Google Scholar

[38] J. Groves, P. Arendt, H. Kung, et al., Texture development in IBAD MgO films as a function of deposition thickness and rate, IEEE Trans. Appl. Supercond. 11 (2001) 2822-2825.

DOI: 10.1109/77.919650

Google Scholar

[39] J. Groves, P. Arendt, S. Foltyn, et al., Recent progress in continuously processed IBAD MgO template meters for HTS applications, Physica C 382 (2002) 43-47.

DOI: 10.1016/s0921-4534(02)01194-2

Google Scholar

[40] R. Brewer, J. Hartman, J. Groves, et al., Rheed in-plane rocking curve analysis of biaxially-textured polycrystalline MgO films on amorphous substrates grown by ion beam-assisted deposition, Appl. Surf. Sci. 175 (2001) 691-696.

DOI: 10.1016/s0169-4332(01)00106-4

Google Scholar

[41] R. Brewer, H. Atwater, J. Groves, et al., Reflection high-energy electron diffraction experimental analysis of polycrystalline MgO films with grain size and orientation distributions, J Appl Phys 93 (2003) 205-210.

DOI: 10.1063/1.1526156

Google Scholar

[42] V. Matias, B. Gibbons, A. Findikoglu, et al., Accelerated coated conductor program at Los Alamos National Laboratory, IEEE Trans. Appl. Supercond. 13 (2003) 2488-2491.

DOI: 10.1109/tasc.2003.811828

Google Scholar

[43] V. Matias, B. Gibbons, A. Findikoglu, et al., Continuous fabrication of IBAD-MgO based coated conductors, IEEE Trans. Appl. Supercond. 15 (2005) 2735-2738.

DOI: 10.1109/tasc.2005.847801

Google Scholar

[44] L. Stan, P. Arendt, R. Paula, et al., Effect of substrate temperature on the texture of MgO films grown by ion beam assisted deposition, Supercond. Sci. Technol. 19 (2006) 365-367.

DOI: 10.1088/0953-2048/19/4/020

Google Scholar

[45] J. Groves, P. Arendt, T. Holesinger, et al., Dual ion assist beam processing of magnesium oxide template layers for 2nd generation coated conductors, IEEE Trans. Appl. Supercond. 17 (2007) 3402-3405.

DOI: 10.1109/tasc.2007.898825

Google Scholar

[46] P. Arendt, S. Foltyn, L. Civale, et al., High critical current YBCO coated conductors based on IBAD MgO, Physica C 412-14 (2004) 795-800.

DOI: 10.1016/j.physc.2003.12.074

Google Scholar

[47] I. Usov, P. Arendt, L. Stan, et al., Characteristics of alumina diffusion barrier films on Hastelloy, J. Mater. Res. 19 (2004) 1175-1180.

DOI: 10.1557/jmr.2004.0152

Google Scholar

[48] A. Gupta, H. Wang, A. Kvit, et al., Effect of microstructure on diffusion of copper in TiN films, J. Appl. Phys. 93 (2003) 5210-5214.

DOI: 10.1063/1.1566472

Google Scholar

[49] O. Polat, T. Aytug, M. Paranthaman, et al., Direct growth of LaMnO3 cap buffer layers on ion-beam-assisted deposition MgO for simplified template-based YBa2Cu3O7-delta-coated conductors, J. Mater. Res. 23 (2008) 3021-3028.

DOI: 10.1557/jmr.2008.0362

Google Scholar

[50] O. Polat, T. Aytug, M. Paranthaman, et al., Properties of YBCO on LaMnO3-Capped IBAD MgO-Templates Without Homo-Epitaxial MgO Layer, IEEE Trans. Appl. Supercond. 19 (2009) 3315-3318.

DOI: 10.1109/tasc.2009.2018815

Google Scholar

[51] L. Stan, D. Feldmann, I. Usov, et al., Composite - as Diffusion Barrier/Nucleation Layer for HTS Coated Conductors Based on IBAD MgO, IEEE Trans. Appl. Supercond. 19 (2009) 3459-3462.

DOI: 10.1109/tasc.2009.2017923

Google Scholar

[52] X. Xiong, S. Kim, K. Zdun, et al., Progress in high throughput processing of long-length, high quality, and low cost IBAD MgO buffer tapes at superpower, IEEE Trans. Appl. Supercond. 19 (2009) 3319-3322.

DOI: 10.1109/tasc.2009.2018816

Google Scholar

[53] V. Selvamanickam, Y. Chen, X. Xiong, et al., Progress in second-generation HTS wire development and manufacturing, Physica C 468 (2008) 1504-1509.

DOI: 10.1016/j.physc.2008.05.063

Google Scholar

[54] V. Selvamanickam, Y. Chen, X. Xiong, et al., High Performance 2G Wires: From R&D to Pilot-Scale Manufacturing, IEEE Trans. Appl. Supercond. 19 (2009) 3225-3230.

DOI: 10.1109/tasc.2009.2018792

Google Scholar

[55] V. Matias, B. Gibbons, D. Feldmann, Coated conductors textured by ion-beam assisted deposition, Physica C 460 (2007) 312-315.

DOI: 10.1016/j.physc.2007.03.357

Google Scholar

[56] S. Hanyu, C. Tashita, Y. Hanada, et al., IBAD-MgO buffer layers for coated conductors in the large-scale system, Physica C 469 (2009) 1364-1366.

DOI: 10.1016/j.physc.2009.05.075

Google Scholar

[57] Y. Yamada, S. Miyata, M. Yoshizumi, et al., Development of Long Length IBAD-MgO and PLD Coated Conductors, IEEE Trans. Appl. Supercond. 19 (2009) 3236-3239.

DOI: 10.1109/tasc.2009.2018072

Google Scholar

[58] M. Yoshizumi, S. Miyata, A. Ibi, et al., High production rate of IBAD-MgO buffered substrate, Physica C 469 (2009) 1361-1363.

DOI: 10.1016/j.physc.2009.05.074

Google Scholar

[59] S. Hanyu, C. Tashita, Y. Hanada, et al., Km-length IBAD-MgO fabricated at 1km/h by a large-scale IBAD system in Fujikura, Physica C 470 (2010) S1025-S1026.

DOI: 10.1016/j.physc.2010.03.013

Google Scholar

[60] S. Hanyu, C. Tashita, T. Hayashida, et al., Long-length IBAD-MgO buffer layers for high performance RE-123 coated conductors by a large ion beam source, Physica C 470 (2010) 1227-1229.

DOI: 10.1016/j.physc.2010.05.080

Google Scholar

[61] K. Ko, H. Ha, H. Kim, et al., Fabrication of highly textured IBAD-MgO template by continuous reel-to-reel process and its characterization, Physica C 463 (2007) 564-567.

DOI: 10.1016/j.physc.2007.01.043

Google Scholar

[62] H. Ha, J. Lee, R. Ko, et al., Thick SmBCO/IBAD-MgO Coated Conductor for High Current Carrying Power Applications, IEEE Trans. Appl. Supercond. 20 (2010) 1545-1548.

DOI: 10.1109/tasc.2010.2041444

Google Scholar