[1]
D. Dimos, P. Chaudhari, J. Mannhart, et al., Orientation dependence of grain-boundary critical currents in YBa2Cu3O7-delta bicrystals, Phys. Rev. Lett. 61 (1988) 219-222.
Google Scholar
[2]
Y. Iijima, N. Tanabe, Y. Ikeno, et al., Biaxially aligned YBa2Cu3O7-x thin film tapes, Physica C 185-189 (1991) 1959-(1960).
DOI: 10.1016/0921-4534(91)91104-c
Google Scholar
[3]
Y. Iijima, N. Tanabe, O. Kohno, et al., In-plane aligned YBa/sub 2/Cu/sub 3/O/sub 7-x/ thin films deposited on polycrystalline metallic substrates, Appl. Phys. Lett. 60 (1992) 769-771.
DOI: 10.1063/1.106514
Google Scholar
[4]
Y. Iijima, K. Onabe, N. Futaki, et al., In-plane texturing control of Y-Ba-Cu-O thin films on polycrystalline substrates by ion-beam-modified intermediate buffer layers, IEEE Trans. Appl. Supercond. 3 (1993) 1510-1515.
DOI: 10.1109/77.233380
Google Scholar
[5]
H. Freyhardt, J. Hoffmann, J. Wiesmann, et al., YBaCuO thick films on planar and curved technical substrates, IEEE Trans. Appl. Supercond. 7 (1997) 1426-1431.
DOI: 10.1109/77.620839
Google Scholar
[6]
Y. Mao, B. Jiang, C. Ren, et al., Low energy ion beam assisted deposition of biaxially aligned yttria stabilized zirconia films on polycrystalline Ni-Cr alloy, Nucl Instrum Meth B 135 (1998) 492-500.
DOI: 10.1016/s0168-583x(97)00655-1
Google Scholar
[7]
X. Wu, S. Foltyn, P. Arendt, et al., High-Current Yba2cu3o7-Delta Thick-Films on Flexible Nickel Substrates with Textured Buffer Layers, Appl. Phys. Lett. 65 (1994) 1961-(1963).
DOI: 10.1063/1.112830
Google Scholar
[8]
X. Wu, S. Foltyn, P. Arendt, et al., Preparation of High-Quality Yba2cu3o7-Delta Thick-Films on Flexible Ni-Based Alloy Substrates with Textured Buffer Layers, IEEE Trans. Appl. Supercond. 5 (1995) 2001-(2006).
DOI: 10.1109/77.402979
Google Scholar
[9]
X. Wu, S. Foltyn, P. Arendt, et al., Properties of Yba2cu3o7-Delta Thick-Films on Flexible Buffered Metallic Substrates, Appl. Phys. Lett. 67 (1995) 2397-2399.
DOI: 10.1063/1.114559
Google Scholar
[10]
Y. Iijima, M. Hosaka, N. Tanabe, et al., Biaxial alignment control of YBa2Cu3O7-x films on random Ni-based alloy with textured yttrium stabilized-zirconia films formed by ion-beam-assisted deposition, J. Mater. Res. 12 (1997) 2913-2923.
DOI: 10.1557/jmr.1997.0386
Google Scholar
[11]
Y. Iijima, M. Hosaka, N. Tanabe, et al., Growth structure of yttria-stabilized-zirconia films during off-normal ion-beam-assisted deposition, J. Mater. Res. 13 (1998) 3106-3113.
DOI: 10.1557/jmr.1998.0423
Google Scholar
[12]
Y. Iijima, M. Kimura, T. Saitoh, et al., Development of Y-123-coated conductors by IBAD process, Physica C 335 (2000) 15-19.
DOI: 10.1016/s0921-4534(00)00131-3
Google Scholar
[13]
P. Arendt, S. Foltyn, J. Groves, et al., YBCO/YSZ coated conductors on flexible Ni alloy substrates, Appl. Supercond. 4 (1996) 429-434.
DOI: 10.1016/s0964-1807(97)00041-0
Google Scholar
[14]
S. Foltyn, P. Arendt, P. Dowden, et al., High-T-c coated conductors - Performance of meter-long YBCO/IBAD flexible tapes, IEEE Trans. Appl. Supercond. 9 (1999) 1519-1522.
DOI: 10.1109/77.784682
Google Scholar
[15]
S. Foltyn, P. Arendt, R. DePaula, et al., Development of meter-long YBCO coated conductors produced by ion beam assisted deposition and pulsed laser deposition, Physica C 341 (2000) 2305-2308.
DOI: 10.1016/s0921-4534(00)01020-0
Google Scholar
[16]
V. Selvamanickam, H. Lee, Y. Li, et al., Scale up of high-performance Y-Ba-Cu-O coated conductors, IEEE Trans. Appl. Supercond. 13 (2003) 2492-2495.
DOI: 10.1109/tasc.2003.811829
Google Scholar
[17]
X. Xiong, K. Lenseth, J. Reeves, et al., High throughput processing of long-length IBAD MgO and epi-buffer templates at SuperPower, IEEE Trans. Appl. Supercond. 17 (2007) 3375-3378.
DOI: 10.1109/tasc.2007.899450
Google Scholar
[18]
Y. Iijima, K. Kakimoto, K. Takeda, Long length ion-beam-assisted deposition template films for Y-123 coated conductors, Physica C 357 (2001) 952-958.
DOI: 10.1016/s0921-4534(01)00450-6
Google Scholar
[19]
Y. Iijima, K. Kakimoto, M. Kimura, et al., Reel to reel continuous formation of Y-123 coated conductors by IBAD and PLD method, IEEE Trans. Appl. Supercond. 11 (2001) 2816-2821.
DOI: 10.1109/77.919649
Google Scholar
[20]
Y. Iijima, K. Kakimoto, K. Takeda, Ion beam assisted growth of fluorite type oxide template films for biaxially textured HTSC coated conductors, IEEE Trans. Appl. Supercond. 11 (2001) 3457-3460.
DOI: 10.1109/77.919807
Google Scholar
[21]
Y. Iijima, K. Kakimoto, T. Saitoh, et al., Temperature and RE elemental dependence for ZrO2-RE2O3 oxide film growth by IBAD method, Physica C 378 (2002) 960-964.
DOI: 10.1016/s0921-4534(02)01577-0
Google Scholar
[22]
K. Kakimoto, Y. Iijima, T. Saitoh, Development of Y-123 coated conductors by ion-beam-assisted deposition, Physica C 378 (2002) 937-943.
DOI: 10.1016/s0921-4534(02)01572-1
Google Scholar
[23]
K. Kakimoto, Y. Iijima, T. Saitoh, Fabrication of long-Y123 coated conductors by combination of IBAD and PLD, Physica C 392 (2003) 783-789.
DOI: 10.1016/s0921-4534(03)01129-8
Google Scholar
[24]
Y. Iijima, K. Kakimoto, Y. Sutoh, et al., Development of 100-m long Y-123 coated conductors processed by IBAD/PLD method, Physica C 412-14 (2004) 801-806.
DOI: 10.1016/j.physc.2003.12.075
Google Scholar
[25]
Y. Iijima, K. Kakimoto, Y. Sutoh, et al., Development of long Y-123 coated conductors by ion-beam-assisted-deposition and the pulsed-laser-deposition method, Supercond. Sci. Technol. 17 (2004) S264-S268.
DOI: 10.1088/0953-2048/17/5/033
Google Scholar
[26]
S. Miyata, T. Watanabe, T. Muroga, et al., Effects of assisting and sputtering beams in IBAD method for a long tape fabrication, Physica C 412-14 (2004) 824-828.
DOI: 10.1016/j.physc.2003.12.073
Google Scholar
[27]
Y. Iijima, K. Kakimoto, Y. Sutoh, et al., Development of long Y-123 coated conductors for coil-applications by IBAD/PLD method, IEEE Trans. Appl. Supercond. 15 (2005) 2590-2595.
DOI: 10.1109/tasc.2005.847662
Google Scholar
[28]
Y. Yamada, T. Muroga, H. Iwai, et al., Present status and perspective of IBAD and PLD system in SRL and self-epitaxy in PLD-CeO2 on IBAD seed layer, Physica C 392 (2003) 777-782.
DOI: 10.1016/s0921-4534(03)01211-5
Google Scholar
[29]
T. Muroga, T. Watanabe, S. Miyata, et al., Rapid fabrication of highly textured CeO2 cap layer on MAD tape for YBCO coated conductor, Physica C 412-14 (2004) 807-812.
DOI: 10.1016/j.physc.2004.02.201
Google Scholar
[30]
Y. Yamada, T. Watanabe, T. Muroga, et al., Rapid production of buffered substrates and long length coated conductor development using IBAD, PLD methods and Self-Epitaxial, ceria buffer, IEEE Trans. Appl. Supercond. 15 (2005) 2600-2603.
DOI: 10.1109/tasc.2005.847666
Google Scholar
[31]
Y. Sutoh, K. Kakimoto, Y. Iijima, et al., Preparation of second buffer layers on IBAD tapes by PLD, Physica C 412 (2004) 829-832.
DOI: 10.1016/j.physc.2003.12.083
Google Scholar
[32]
Y. Iijima, N. Kaneko, S. Hanyu, et al., Development of IBAD/PLD process for long length Y-123 conductors in Fujikura, Physica C 445 (2006) 509-514.
DOI: 10.1016/j.physc.2006.04.045
Google Scholar
[33]
S. Hanyu, Y. Iijima, H. Fuji, et al., Development of 500 m-length IBAD-Gd2Zr2O7 film for Y-123 coated conductors, Physica C 463 (2007) 568-570.
DOI: 10.1016/j.physc.2007.03.460
Google Scholar
[34]
S. Hanyu, T. Miura, Y. Lijima, et al., GZO/MgO IBAD-buffer layers for coated conductors, Physica C 468 (2008) 1591-1593.
DOI: 10.1016/j.physc.2008.05.079
Google Scholar
[35]
C. Wang, K. Do, M. Beasley, et al., Deposition of in-plane textured MgO on amorphous Si3N4 substrates by ion-beam-assisted deposition and comparisons with ion-beam-assisted deposited yttria-stabilized-zirconia, Appl. Phys. Lett. 71 (1997).
DOI: 10.1063/1.120227
Google Scholar
[36]
J. Groves, P. Arendt, S. Foltyn, et al., Ion-beam assisted deposition of bi-axially aligned MgO template films for YBCO coated conductors, IEEE Trans. Appl. Supercond. 9 (1999) 1964-(1966).
DOI: 10.1109/77.784846
Google Scholar
[37]
J. Willis, P. Arendt, S. Foltyn, et al., Advances in YBCO-coated conductor technology, Physica C 335 (2000) 73-77.
DOI: 10.1016/s0921-4534(00)00146-5
Google Scholar
[38]
J. Groves, P. Arendt, H. Kung, et al., Texture development in IBAD MgO films as a function of deposition thickness and rate, IEEE Trans. Appl. Supercond. 11 (2001) 2822-2825.
DOI: 10.1109/77.919650
Google Scholar
[39]
J. Groves, P. Arendt, S. Foltyn, et al., Recent progress in continuously processed IBAD MgO template meters for HTS applications, Physica C 382 (2002) 43-47.
DOI: 10.1016/s0921-4534(02)01194-2
Google Scholar
[40]
R. Brewer, J. Hartman, J. Groves, et al., Rheed in-plane rocking curve analysis of biaxially-textured polycrystalline MgO films on amorphous substrates grown by ion beam-assisted deposition, Appl. Surf. Sci. 175 (2001) 691-696.
DOI: 10.1016/s0169-4332(01)00106-4
Google Scholar
[41]
R. Brewer, H. Atwater, J. Groves, et al., Reflection high-energy electron diffraction experimental analysis of polycrystalline MgO films with grain size and orientation distributions, J Appl Phys 93 (2003) 205-210.
DOI: 10.1063/1.1526156
Google Scholar
[42]
V. Matias, B. Gibbons, A. Findikoglu, et al., Accelerated coated conductor program at Los Alamos National Laboratory, IEEE Trans. Appl. Supercond. 13 (2003) 2488-2491.
DOI: 10.1109/tasc.2003.811828
Google Scholar
[43]
V. Matias, B. Gibbons, A. Findikoglu, et al., Continuous fabrication of IBAD-MgO based coated conductors, IEEE Trans. Appl. Supercond. 15 (2005) 2735-2738.
DOI: 10.1109/tasc.2005.847801
Google Scholar
[44]
L. Stan, P. Arendt, R. Paula, et al., Effect of substrate temperature on the texture of MgO films grown by ion beam assisted deposition, Supercond. Sci. Technol. 19 (2006) 365-367.
DOI: 10.1088/0953-2048/19/4/020
Google Scholar
[45]
J. Groves, P. Arendt, T. Holesinger, et al., Dual ion assist beam processing of magnesium oxide template layers for 2nd generation coated conductors, IEEE Trans. Appl. Supercond. 17 (2007) 3402-3405.
DOI: 10.1109/tasc.2007.898825
Google Scholar
[46]
P. Arendt, S. Foltyn, L. Civale, et al., High critical current YBCO coated conductors based on IBAD MgO, Physica C 412-14 (2004) 795-800.
DOI: 10.1016/j.physc.2003.12.074
Google Scholar
[47]
I. Usov, P. Arendt, L. Stan, et al., Characteristics of alumina diffusion barrier films on Hastelloy, J. Mater. Res. 19 (2004) 1175-1180.
DOI: 10.1557/jmr.2004.0152
Google Scholar
[48]
A. Gupta, H. Wang, A. Kvit, et al., Effect of microstructure on diffusion of copper in TiN films, J. Appl. Phys. 93 (2003) 5210-5214.
DOI: 10.1063/1.1566472
Google Scholar
[49]
O. Polat, T. Aytug, M. Paranthaman, et al., Direct growth of LaMnO3 cap buffer layers on ion-beam-assisted deposition MgO for simplified template-based YBa2Cu3O7-delta-coated conductors, J. Mater. Res. 23 (2008) 3021-3028.
DOI: 10.1557/jmr.2008.0362
Google Scholar
[50]
O. Polat, T. Aytug, M. Paranthaman, et al., Properties of YBCO on LaMnO3-Capped IBAD MgO-Templates Without Homo-Epitaxial MgO Layer, IEEE Trans. Appl. Supercond. 19 (2009) 3315-3318.
DOI: 10.1109/tasc.2009.2018815
Google Scholar
[51]
L. Stan, D. Feldmann, I. Usov, et al., Composite - as Diffusion Barrier/Nucleation Layer for HTS Coated Conductors Based on IBAD MgO, IEEE Trans. Appl. Supercond. 19 (2009) 3459-3462.
DOI: 10.1109/tasc.2009.2017923
Google Scholar
[52]
X. Xiong, S. Kim, K. Zdun, et al., Progress in high throughput processing of long-length, high quality, and low cost IBAD MgO buffer tapes at superpower, IEEE Trans. Appl. Supercond. 19 (2009) 3319-3322.
DOI: 10.1109/tasc.2009.2018816
Google Scholar
[53]
V. Selvamanickam, Y. Chen, X. Xiong, et al., Progress in second-generation HTS wire development and manufacturing, Physica C 468 (2008) 1504-1509.
DOI: 10.1016/j.physc.2008.05.063
Google Scholar
[54]
V. Selvamanickam, Y. Chen, X. Xiong, et al., High Performance 2G Wires: From R&D to Pilot-Scale Manufacturing, IEEE Trans. Appl. Supercond. 19 (2009) 3225-3230.
DOI: 10.1109/tasc.2009.2018792
Google Scholar
[55]
V. Matias, B. Gibbons, D. Feldmann, Coated conductors textured by ion-beam assisted deposition, Physica C 460 (2007) 312-315.
DOI: 10.1016/j.physc.2007.03.357
Google Scholar
[56]
S. Hanyu, C. Tashita, Y. Hanada, et al., IBAD-MgO buffer layers for coated conductors in the large-scale system, Physica C 469 (2009) 1364-1366.
DOI: 10.1016/j.physc.2009.05.075
Google Scholar
[57]
Y. Yamada, S. Miyata, M. Yoshizumi, et al., Development of Long Length IBAD-MgO and PLD Coated Conductors, IEEE Trans. Appl. Supercond. 19 (2009) 3236-3239.
DOI: 10.1109/tasc.2009.2018072
Google Scholar
[58]
M. Yoshizumi, S. Miyata, A. Ibi, et al., High production rate of IBAD-MgO buffered substrate, Physica C 469 (2009) 1361-1363.
DOI: 10.1016/j.physc.2009.05.074
Google Scholar
[59]
S. Hanyu, C. Tashita, Y. Hanada, et al., Km-length IBAD-MgO fabricated at 1km/h by a large-scale IBAD system in Fujikura, Physica C 470 (2010) S1025-S1026.
DOI: 10.1016/j.physc.2010.03.013
Google Scholar
[60]
S. Hanyu, C. Tashita, T. Hayashida, et al., Long-length IBAD-MgO buffer layers for high performance RE-123 coated conductors by a large ion beam source, Physica C 470 (2010) 1227-1229.
DOI: 10.1016/j.physc.2010.05.080
Google Scholar
[61]
K. Ko, H. Ha, H. Kim, et al., Fabrication of highly textured IBAD-MgO template by continuous reel-to-reel process and its characterization, Physica C 463 (2007) 564-567.
DOI: 10.1016/j.physc.2007.01.043
Google Scholar
[62]
H. Ha, J. Lee, R. Ko, et al., Thick SmBCO/IBAD-MgO Coated Conductor for High Current Carrying Power Applications, IEEE Trans. Appl. Supercond. 20 (2010) 1545-1548.
DOI: 10.1109/tasc.2010.2041444
Google Scholar