[1]
G.N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski, Picosecond superconducting single-photon optical detector, Appl. Phys. Lett. 79 (2001) 705-707.
DOI: 10.1063/1.1388868
Google Scholar
[2]
G.N. Gol'tsman, O. Minaeva, A. Korneev, M. Tarkhov, I. Rubtsova, A. Divochiy, I. Milostnaya, G. Chulkova, N. Kaurova, B. Voronov, D. Pan, J. Kitaygorsky, A. Cross, A. Pearlman, I. Komissarov, W. Slysz, M. Wegrzecki, P. Grabiec, R. Sobolewski, Middle-Infrared to Visible-Light Ultrafast Superconducting Single-Photon Detectors, IEEE Trans. Appl. Supercond. 17 (2007).
DOI: 10.1109/tasc.2007.898252
Google Scholar
[3]
S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, NbN Superconducting Single-Photon Detectors Prepared on Single-Crystal MgO Substrates, IEEE Trans. Appl. Supercond. 17 (2007) 285-288.
DOI: 10.1109/tasc.2007.898582
Google Scholar
[4]
T. Seki, H. Shibata, H. Takesue, Y. Tokura, N. Imoto, Comparison of timing jitter between NbN superconducting single-photon detector and avalanche photodiode, Physica C 470 (2010) 1534-1537.
DOI: 10.1016/j.physc.2010.05.156
Google Scholar
[5]
J.A. Stern, W.H. Farr, Fabrication and Characterization of Superconducting NbN Nanowire Single Photon Detectors, IEEE Trans. Appl. Supercond. 17 (2007) 306-309.
DOI: 10.1109/tasc.2007.898060
Google Scholar
[6]
A.J. Kerman, E.A. Dauler, W.E. Keicher, J.K.W. Yang, K.K. Berggren, G. Gol'tsman, B. Voronov, Kinetic-inductance-limited reset time of superconducting nanowire photon counters, Appl. Phys. Lett. 88 (2006) 111116.
DOI: 10.1063/1.2183810
Google Scholar
[7]
A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Gol'tsman, W. Słysz, A. Pearlman, A. Verevkin, R. Sobolewski, Quantum Efficiency and Noise Equivalent Power of Nanostructured, NbN, Single-Photon Detectors in the Wavelength Range From Visible to Infrared, IEEE Trans. Appl. Supercond. 15 (2005).
DOI: 10.1109/tasc.2005.849923
Google Scholar
[8]
M. Tarkhov, J. Claudon, J. Ph. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A.V. Semenov, G. Gol'tsman, Ultrafast reset time of superconducting single photon detectors, Appl. Phys. Lett. 92 (2008) 241112.
DOI: 10.1063/1.2945277
Google Scholar
[9]
H. Shibata, T. Maruyama, T. Akazaki, H. Takesue, T. Honjo, Y. Tokura, Photon detection and fabrication of MgB2 nanowire, Physica C 468 (2008) 1992-(1994).
DOI: 10.1016/j.physc.2008.05.248
Google Scholar
[10]
H. Shibata, M. Asahi, T. Maruyama, T. Akazaki, H. Takesue, T. Honjo, and Y. Tokura, Optical Response and Fabrication of MgB2 Nanowire Detectors, IEEE Trans. Appl. Supercond. 19 (2009) 358-360.
DOI: 10.1109/tasc.2009.2017951
Google Scholar
[11]
H. Shimakage, M. Tatsumi, Z. Wang, Ultrathin MgB2 films fabricated by the co-evaporation method at high Mg evaporation rates, Supercond. Sci. Technol. 21 (2008) 095009.
DOI: 10.1088/0953-2048/21/9/095009
Google Scholar
[12]
E. Monticone, C. Portesi, S. Borini, E. Taralli, M. Rajteri, Superconducting MgB2 Nanostructures Fabricated by Electron Beam Lithography, IEEE Trans. Appl. Supercond. 17 (2007) 222-224.
DOI: 10.1109/tasc.2007.898183
Google Scholar
[13]
Y.Z. Wang, C.G. Zhuang, X. Sun, X. Huang, Q. Fu, Z.M. Liao, D.P. Yu, Q.R. Feng,Ultrathin epitaxial MgB2 superconducting films with high critical current density and Tc above 33 K, Supercond. Sci. Technol. 22 (2009) 125015.
DOI: 10.1088/0953-2048/22/12/125015
Google Scholar
[14]
Y.H. Zhang, Z.Y. Lin, Q. Dai, D.Y. Li, Y.B. Wang, Y. Zhang, Y. Wang, Q.R. Feng, Ultrathin MgB2 films fabricated on Al2O3 substrate by hybrid physical–chemical vapor deposition with high Tc and Jc, Supercond. Sci. Technol. 24 (2011) 015013.
DOI: 10.1088/0953-2048/24/1/015013
Google Scholar
[15]
J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride, Nature 410 (2001) 63-64.
DOI: 10.1038/35065039
Google Scholar
[16]
K.S. II'in, M. Lindgren, M. Currie, A.D. Semenov, G.N. Gol'tsman, R. Sobolewski, S.I. Cherednichenko, E.M. Gershenzon, Picosecond hot-electron energy relaxation in NbN superconducting photodetectors, Appl. Phys. Lett. 76 (2000) 2752-2754.
DOI: 10.1063/1.126480
Google Scholar
[17]
Y. Xu, M. Khafizov, L. Satrapinsky, P. Kus, A. Plecenik, R. Sobolewski, Time-Resolved Photoexcitation of the Superconducting Two-Gap State in MgB2 Thin Films, Phys. Rev. Lett. 91 (2003) 197004.
DOI: 10.1103/physrevlett.91.197004
Google Scholar
[18]
M. Khafizov, X. Li, Y. Cui, X.X. Xi, R. Sobolewski, Mechanism of Light Detection in Current-Biased Superconducting MgB2 Microbridges, IEEE Trans. Appl. Supercond. 17 (2007) 2867-2870.
DOI: 10.1109/tasc.2007.898372
Google Scholar
[19]
A.T. Matveev, J. Albrecht, M. Konuma, B. Stuhlhofer, U. Starke, H.U. Habermeier, Highly homogeneous MgB2 films prepared by a new post-annealing process, Supercond. Sci. Technol. 18 (2005) 1313-1316.
DOI: 10.1088/0953-2048/18/10/010
Google Scholar
[20]
A.T. Matveev, J. Albrecht, M. Konuma, G. Cristiani, Y. Krockenberger, U. Starke, G. Schütz, H.U. Habermeier, Synthesis of MgB2 films in Mg vapour flow and their characterization, Supercond. Sci. Technol. 19 (2006) 299-305.
DOI: 10.1088/0953-2048/19/4/010
Google Scholar
[21]
S.D. Bu, D.M. Kim, J.H. Choi, J. Giencke, E.E. Hellstrom, D.C. Larbalestier, S. Patnaik, L. Cooley, C.B. Eom, J. Lettieri, D.G. Schlom, W. Tian, X.Q. Pan, Synthesis and properties of c-axis oriented epitaxial MgB2 thin films, Appl. Phys. Lett. 80 (2002).
DOI: 10.1063/1.1504490
Google Scholar
[22]
S. Xuan, H. Xu, W.Y. Zhou, F.Q. Rong, Preperties of MgB2 ultra-thin films grown by hybrid physical-chemical vapor deposition, Acta. Phys. Sin. 60 (2011) 087401.
DOI: 10.7498/aps.60.087401
Google Scholar
[23]
C. G Zhuang, S. Meng, C. Y Zhang, Q. R Feng, Z. Z Gan, H. Yang, Y. Jia, H. H Wen, X.X. Xi, Ultrahigh current-carrying capability in clean MgB2 films, J. Appl. Phys. 104 (2008) 013924.
DOI: 10.1063/1.2952052
Google Scholar
[24]
Q. Dai, Y.B. Wang, X.B. Ma, Q. Q Yang, H. Zhang, R.J. Nie, Q.R. Feng, F. R Wang, 20 nm MgB2 superconducting film with Tc above 34 K and Jc ~ 106 A cm-2 at 30 K, Physica C 475 (2012) 57–59.
DOI: 10.1016/j.physc.2011.05.001
Google Scholar