[1]
T. Araki, I. Hirabayashi, Review of a chemical approach to YBa2Cu3O7−x-coated superconductors-metalorganic deposition using trifluoroacetates, Supercond. Sci. Technol. 16 (2003) R71.
DOI: 10.1088/0953-2048/16/11/r01
Google Scholar
[2]
T. Puig, J. C. González, A Pomar, N Mestres, O Castaño, M Coll, J Gázquez, F Sandiumenge, The influence of growth conditions on the microstructure and critical currents of TFA-MOD YBa2Cu3O7 films S Piñol and X Obradors, Supercond. Sci. Technol. 18 (2005).
DOI: 10.1088/0953-2048/18/8/020
Google Scholar
[3]
Martin W. Rupich, Darren T. Verebelyi, Wei Zhang, Thomas Kodenkandath, and Xiaoping Li, Metalorganic Deposition of YBCO Films for Second-Generation High-Temperature Superconductor Wires, MRS Bull. 29 (2004) 572-578.
DOI: 10.1557/mrs2004.163
Google Scholar
[4]
T. Izumi, Y. Shiohara, R&D of coated conductors for applications in Japan, Physica C 470 (2010) 967-970.
DOI: 10.1016/j.physc.2010.05.013
Google Scholar
[5]
Martin W Rupich, Xiaoping Li, Cees Thieme, Srivatsan Sathyamurthy, Steven Fleshler, David Tucher, Elliot Thompson, Jeff Schreiber, Joseph Lynch, David Buczek, Ken DeMoranville, James Inch, Paul Cedrone and James Slack, Advances in second generation high temperature superconducting wire manufacturing and R&D at American Superconductor Corporation, Supercond. Sci. Technol. 23 (2010).
DOI: 10.1088/0953-2048/23/1/014015
Google Scholar
[6]
Paul C. McIntyre, Michael J. Cima, John A. Smith, Jr., and Robert B. Hallock, Michael P. Siegal and Julia M. Phillips, Effect of growth conditions on the properties and morphology of chemically derived epitaxial thin films of YBa2Cu3O7−x on (001) LaAlO3, J. Appl. Phys. 71 (1992).
DOI: 10.1063/1.351172
Google Scholar
[7]
A. Llordés, K. Zalamova, S. Ricart, A. Palau, A. Pomar, T. Puig, A. Hardy, M. K. Ván Bael and X. Obradors, Evolution of Metal-Trifluoroacetate Precursors in the Thermal Decomposition toward High-Performance YBa2Cu3O7 Superconducting Films, Chem. Mater. 22 (2010).
DOI: 10.1021/cm903080k
Google Scholar
[8]
Seok Hern Jang, Jun Hyung Lim, Jin Sung Lee, Kyung Min Yoon, Kyn Tae Kim, Jinho Joo, Seung-Boo Jung and Hoo-Jeong Lee, Effects of heat treatment and film thickness on microstructure and critical properties of YBCO film processed by TFA-MOD, Physica C 451 (2007).
DOI: 10.1109/tasc.2007.898850
Google Scholar
[9]
X. M. Cui, B. W. Tao, J. Xiong, X. Z. Liu, J. Zhu and Y. R. Li, Effect of annealing time on the structure and properties of YBCO films by the TFA–MOD method, Physica C 432 (2005) 147-152.
DOI: 10.1016/j.physc.2005.08.001
Google Scholar
[10]
J.T. Dawley, P.G. Clem, T.J. Boyle, L.M. Ottley, D.L. Overmyer, M.P. Siegal, Rapid processing method for solution deposited YBa2Cu3O7−δ thin films, Physica C 402 (2004) 143-151.
DOI: 10.1016/j.physc.2003.09.072
Google Scholar
[11]
Fazhu Ding, Hongwei Gu and Tao Li, The fabrication of YBa2Cu3O7−x film by metal–organic deposition using terpineol-modified trifluoroacetates, Supercond. Sci. Technol. 21 (2008) 095004.
DOI: 10.1088/0953-2048/21/9/095004
Google Scholar
[12]
Yoshitaka Tokunaga, Tetsuji Honjo, Teruo Izumi, Yuh Shiohara, Yasuhiro Iijima, Takashi Saitoh, Tomotaka Goto, Atsuya Yoshinaka, Akimasa Yajima, Advanced TFA-MOD process of high critical current YBCO films for coated conductors, Cryogenics 44 (2004).
DOI: 10.1016/j.cryogenics.2004.04.010
Google Scholar
[13]
N Roma, S. Morlens, S Ricart, K Zalamova, J M Moreto, A Pomar, T Puig and X Obradors, Acid anhydrides: a simple route to highly pure organometallic solutions for superconducting films, Supercond. Sci. Technol. 19 (2006) 521-527.
DOI: 10.1088/0953-2048/19/6/019
Google Scholar
[14]
M. Paranthaman, T.G. Chirayil, S. Sathyamurthy, D.B. Beach, A. Goyal, F.A. List, D.F. Lee, X. Cui, S.W. Lu, B. Kang, E.D. Specht, P.M. Martin, D.M. Kroeger, R. Feenstra, C. Cantoni, and D.K. Christen, Fabrication of long lengths of YBCO coated conductors using a continuous reel-to-reel dip-coating unit, IEEE Trans Appl. Supercond. 11 (2001).
DOI: 10.1109/77.919730
Google Scholar
[15]
B. Zhao, Z.Y. Sun, K. Shi, J. Yang, Y.P. Sun and Z.H. Han, Preparation of YBa2Cu3O7−δ films by MOD method using trifluoroacetate as precursor, Physica C 386 (2003) 342-347.
DOI: 10.1016/s0921-4534(02)02195-0
Google Scholar
[16]
J. Shibata, Y. Tokunaga, R. Teranishi, H. Fuji, T. Honjo, T. Izumi and Y. Shiohara, Effects of heat-treatment conditions on microstructure of Y123 films deposited by TFA-MOD method, Physica C 392-396 (2003) 922-926.
DOI: 10.1016/s0921-4534(03)01151-1
Google Scholar
[17]
K. Knoth, S. Engel, C. Apetrii, M. Falter, B. Schlobach, R. Hühne, S. Oswald, L. Schultz and B. Holzapfel, Chemical solution deposition of YBa2Cu3O7−x coated conductors, Current Opinion in Solid State and Materials Science, 10 (2006) 205-216.
DOI: 10.1016/j.cossms.2007.07.001
Google Scholar
[18]
Katerina Zalamova, Neus Romà, Alberto Pomar, Stephanie Morlens, Teresa Puig, Jaume Gázquez, Anna E. Carrillo, Felip Sandiumenge, Susana Ricart, Narcís Mestres and Xavier Obradors, Smooth Stress Relief of Trifluoroacetate Metal-Organic Solutions for YBa2Cu3O7 Film Growth, Chem. Mater. 18 (2006).
DOI: 10.1021/cm061556+
Google Scholar
[19]
Vyacheslav F. Solovyov, Harold J. Wiesmann, Li-Jun Wu, Masaki Suenaga, Kartik Venkataraman, Victor A. Maroni, A new technique for the growth of epitaxial YBCO using spray pyrolysis, Physica C 415 (2004) 125-132.
DOI: 10.1016/j.physc.2004.08.006
Google Scholar