Influence of Electron-Beam Annealing Duration on MgB2 Film Superconductivity

Article Preview

Abstract:

A novel method to fabricate Magnesium diboride ( MgB2) film by electron beam annealing was presented. The MgB2 thin films could be prepared in a second or sub-second without any toxic diborane gas, extra Mg vapor or argon gas. The method has the advantages of short formation time and high efficiency. Based on this, the relationship between MgB2 conductivity and electron beam annealing duration was investigated experimentally with an accelerating voltage of 40 × 103 V, a beam current of 3×103 A and different annealing durations of 0.1796s, 1860s, 0.2108s, 0.2200s and 0.2332s. The experimental results showed the MgB2 film with 0.2200s has the highest Tconset , the most dense structure and the strongest diamagnetic signal. Its zero-field Jc at 5 K was 5.0 × 106 A/cm2. Also the variation of the film superconducting properties with the annealing duration was found, it will provide an important reference for the preparation of high-quality MgB2 thin films.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

255-260

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Hanna, S.F. Wang, J.M. Redwing, et al., Thickness dependence of critical current density in MgB2 films fabricated by ex situ annealing of CVD - grown B films in Mg vapor, Supercond. Sci. Technol. 22(1) (2009) 015-024.

DOI: 10.1088/0953-2048/22/1/015024

Google Scholar

[2] W.N. Kang, H.J. Kim, E.M. Choi, et al., MgB2 superconducting thin films with a transition temperature of 39 Kelvin, Science 292 (2001) 1521-1523.

DOI: 10.1126/science.1060822

Google Scholar

[3] S.D. Bu, D.M. Kim, J.H. Choi, et al., Synthesis and properties of c-axis oriented epitaxial MgB2 thin films, Appl. Phys. Lett. 81 (2012) 1851-1853.

Google Scholar

[4] M. Kuhberger, G. Gritzner, K.R. Schoppl, et al., Preparation and characterization of superconducting MgB2 films on alumina, Supercond. Sci. Technol. 17 (2004) 764.

Google Scholar

[5] Y.B. Zhang, H.M. Zhu, S.P. Zhou, et al., Uniform MgB2 thin films grown on Si(111) and Al2O3(0001) substrates prepared by e-beam evaporation and in situ annealing methods, J. Aappl. Phys. 99 (8) (2006) 08M512.

DOI: 10.1063/1.2177138

Google Scholar

[6] H.M. Zhu, Y.B. Zhang, X.L. Sun, et al., MgB2 thin films on Si(111) without a buffer layer prepared by e-beam evaporation, Physica C 452 (2007) 11-15.

DOI: 10.1016/j.physc.2006.11.009

Google Scholar

[7] X.H. Zeng, A.V. Pogrebnyakov, A. Kotcharov, et al., In situ epitaxial MgB2 thin films for superconducting electronics, Nat. Mater. 1 (2002) 35-38.

DOI: 10.1038/nmat703

Google Scholar

[8] W.K. Seong, J.Y. Huh, W.N. Kang, et al., Growth of Epitaxial MgB2 Thick Films with Columnar Structures by Using HPCVD, Chem. Vap. Deposition 13 (2007) 680-683.

DOI: 10.1002/cvde.200706636

Google Scholar

[9] Y.H. Zhang, Z.Y. Lin, Q. Dai, et al., Ultrathin MgB2 films fabricated on Al2O3 substrate by hybrid physical–chemical vapor deposition with high Tc and Jc, Supercond. Sci. Technol. 24 (2011) 015013.

DOI: 10.1088/0953-2048/24/1/015013

Google Scholar

[10] C.Y. Zhang, Y.B. Wang, W.W. Hu, et al., The effect of Si addition in MgB2 thin films by hybrid physical-chemical vapor deposition using silane as the doping source, Supercond. Sci. Technol. 23 (2010) 065017.

DOI: 10.1088/0953-2048/23/6/065017

Google Scholar

[11] X.X. Xi, X.H. Zeng, A.V. Pogrebnyakov, et al., In situ growth of MgB2 thin films by hybrid physical-chemical vapor deposition, IEEE Trans. on Appl. Supercond. 13 (2003) 3233-3237.

DOI: 10.1109/tasc.2003.812209

Google Scholar

[12] K. Ueda, M. Naito, In situ growth of superconducting MgB2 thin films by molecular-beam epitaxy, J. Appl. Phys. 93 (2003) 2113.

DOI: 10.1063/1.1537460

Google Scholar

[13] G. Grassano, W. Ramadan, V. Ferrando, et al., As-grown magnesium diboride superconducting thin films deposited by pulsed laser deposition, Supercond. Sci. Technol. 14 (2001) 762-764.

DOI: 10.1088/0953-2048/14/9/326

Google Scholar

[14] X.D. Kong, Q. Dai, L. Han, et al., Fabrication of superconducting magnesium diboride thin films by electron beam annealing, Supercond. Sci. Technol. 24 (2011) 105013.

DOI: 10.1088/0953-2048/24/10/105013

Google Scholar

[15] Q. Dai, X.D. Kong, Q.R. Feng, et al., MgB2 films prepared by rapid annealing method, Physica C 475 (2012) 24–27.

DOI: 10.1016/j.physc.2012.01.014

Google Scholar

[16] H.S. Cheng, D.C. Sun, Transient annealing of As-implanted silicon by a large area low energy electron beam, Nuclear Techniques 13(1) (1990) 9-13 (in Chinese).

Google Scholar

[17] C.P. Bean, Magnetization of hard superconductors, Phys. Rev. Lett. 8 (1962) 250-253.

Google Scholar

[18] C.G. Zhuang, S. Meng, C.Y. Zhang, et al., Ultrahigh current-carrying capability in clean MgB2 films, J. Aappl. Phys. 104 (1) (2008) 013924.

DOI: 10.1063/1.2952052

Google Scholar

[19] A. Heinrich, C. Leirer, B. Stritzker, et al., Pulsed laser deposition of MgB2-films with high critical temperatures, Supercond. Sci. Technol. 18 (2005) 1215.

DOI: 10.1088/0953-2048/18/9/012

Google Scholar

[20] Z.Q. Yu, K. Wu, X.B. Ma, et al., Fabrication of MgB2 films via multilayer ex-situ annealing, Acta Physica Sinica 56 (2007) 512-517(in Chinese).

DOI: 10.7498/aps.56.512

Google Scholar

[21] Y. Harada, T. Takahashi, M. Kuroda, et al., Fabrication of as-grown MgB2 films on ZnO (0001) substrates by molecular beam epitaxy, Physica C 445-448 (2006) 884-886.

DOI: 10.1016/j.physc.2006.06.038

Google Scholar

[22] R. Micunek, A. Plecenik, P. Kus, et al., Preparation of MgB2 superconducting thin films by magnetron sputtering, Physica C 435 (2006) 78-81.

DOI: 10.1016/j.physc.2006.01.022

Google Scholar