[1]
R. Agarwal, Heterointerfaces in semiconductor nanowires, Small 4 (2008) 1872-1893.
Google Scholar
[2]
M. Law, J. Goldberger, P.D. Yang, Semiconductor nanowires and nanotubes, Annu. Rev. Mater. Res., 34 (2004) 83-122.
DOI: 10.1146/annurev.matsci.34.040203.112300
Google Scholar
[3]
H. Pan, Y.P. Feng, Semiconductor nanowires and nanotubes: effects of size and surface-to-volume ratio, ACS Nano, 2 (2008) 2410-2414.
DOI: 10.1021/nn8004872
Google Scholar
[4]
C.R. Martin, Membrane-based synthesis of nanomaterials, Chem. Mater. 8 (1996) 1739-1746.
Google Scholar
[5]
M. Lai, D.J. Riley, Templated electrosynthesis of nanomaterials and porous structures, J. Colloid Interface Sci. 323 (2008) 203-212.
DOI: 10.1016/j.jcis.2008.04.054
Google Scholar
[6]
H.A. Laitinen, C.A. Vincent, T.M. Bednarski, Behavior of tin oxide semiconducting electrodes under conditions of linear potential scan, J. Electrochem. Soc. 115 (1968) 1024.
DOI: 10.1149/1.2410851
Google Scholar
[7]
D. Elliot, D.L. Zellmer, H.A. Laitinen, Electrochemical properties of polycrystalline tin oxide, J. Electrochem. Soc. 117 (1970) 1345.
DOI: 10.1149/1.2407316
Google Scholar
[8]
A. Birkel, Y. -G. Lee, D. Koll, Highly efficient and stable dye-sensitized solar cells based on SnO2 nanocrystals prepared by microwave-assisted synthesis, Energy Environ. Sci. 5 (2012) 5392-5400.
DOI: 10.1039/c1ee02115j
Google Scholar
[9]
P.K.H. Ho, J.S. Kim, J.H. Burroughes, H. Becker, S. Li, T.M. Brown, F. Cacialli, R.H. Friend, Molecular-scale interface engineering for polymer light-emitting diodes, Nature 404 (2000) 481-484.
DOI: 10.1038/35006610
Google Scholar
[10]
Y. Fan, J. Liu, H. Lu, Hierarchical structure SnO2 supported Pt nanoparticles as enhanced electrocatalyst for methanol oxidation, Electrochimica Acta 76 (2012) 475-479.
DOI: 10.1016/j.electacta.2012.05.067
Google Scholar
[11]
Z . Wang, Z.C. Wang, S. Madhavi, One-step synthesis of SnO2 and TiO2 hollow nanostructures with various shapes and their enhanced lithium storage properties, Chem. - Eur. J. 18 (2012) 7561-7567.
DOI: 10.1002/chem.201103842
Google Scholar
[12]
X. Fang, J. Yan, L. Hu, Thin SnO2 nanowires with uniform diameter as excellent field emitters: a stability of more than 2400 minutes, Adv. Funct. Mater. 22 (2012) 1613-1622.
DOI: 10.1002/adfm.201102196
Google Scholar
[13]
S.T. Chang, I.C. Leu, M.H. Hon, Electrochemical behavior of nanocrystalline tin oxide electrodeposited on a Cu substrate for Li-ion batteries, Electrochem. Solid State Lett. 5 (2002) C71-C74.
DOI: 10.1149/1.1485808
Google Scholar
[14]
N.S. Ramgir, I.S. Mulla, K.P. Vijayamohanan, Effect of RuO2 in the shape selectivity of submicron-sized SnO2 structures, J. Phys. Chem. B 109 (2005) 12297-12303.
DOI: 10.1021/jp044677a
Google Scholar
[15]
L. Luo, F. Liang, J. Jie, Sn-catalyzed synthesis of SnO2 nanowires and their optoelectronic characteristics, Nanotechnology 22 (2011) 485701.
DOI: 10.1088/0957-4484/22/48/485701
Google Scholar
[16]
D. Maestre, A. Cremades, J. Piqueras, Growth and luminescence properties of micro- and nanotubes in sintered tin oxide, J. Appl. Phys. 97 (2005) 044316.
DOI: 10.1063/1.1851602
Google Scholar
[17]
Y. Liu, M. Liu, Growth of aligned square-shaped SnO2 tube arrays, Adv. Funct. Mater. 15 (2005) 57-62.
DOI: 10.1002/adfm.200400001
Google Scholar
[18]
Z.Q. Liu, D.H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, C. Zhou, Laser ablation synthesis and electron transport studies of tin oxide nanowires, Adv. Mater. 15 (2003) 1754.
DOI: 10.1002/adma.200305439
Google Scholar
[19]
Z.R. Dai, Z.W. Pan, Z.L. Wang, Ultra-long single crystalline nanoribbons of tin oxide, Solid State Commun. 118 (2001) 351-354.
DOI: 10.1016/s0038-1098(01)00122-3
Google Scholar