The Influence of High-Energy Ball Milling and Sintering Process on the Microstructure and Mechanical Properties of Al-Ni-Y-Co-La Alloy

Abstract:

Article Preview

Al86Ni7Y4.5Co1La1.5 (at.%) alloy powder was produced by argon gas atomization process. After high-energy ball milling, the powder was consolidated and extruded by using vacuum hot press sintering under different process conditions, sintering temperature, extrusion pressure, sintering time, etc.. The microstructure and morphology of the powder and consolidated bulk alloy were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The phase transformation of the powder was investigated by differential scanning calorimetry (DSC). Mechanical properties of the consolidated bulk alloy were examined. The results showed that as the milling time increase, the volume fraction of amorphous materials and the hardness and yield strength of the bulk alloy were obvious improved.

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Edited by:

Lianjun Wang, Xiumei Wang, Guo Yan and Kefu Yao

Pages:

281-285

DOI:

10.4028/www.scientific.net/MSF.745-746.281

Citation:

Y.B. Yuan et al., "The Influence of High-Energy Ball Milling and Sintering Process on the Microstructure and Mechanical Properties of Al-Ni-Y-Co-La Alloy", Materials Science Forum, Vols. 745-746, pp. 281-285, 2013

Online since:

February 2013

Export:

Price:

$38.00

[1] Y. He, S.J. Poon, G.J. Shiflet. Synthesis and microstructural evolution of Al-Ni-Fe-Gd metallic glass by mechanical alloying. J Science 241 (1988) 1640–1642.

DOI: 10.1016/0956-7151(94)90306-9

[2] A. Inoue. Bulk amorphous alloys. J Prog. Mater. Sci. 43 (1998) 365–520.

[3] Y.H. Kim, A. Inoue, T. Masumoto. Elevated-temperature strength of an Al88Ni9Ce2Fe1 amorphous alloy containing nanoscale fcc-Al particles. J Mater. Trans. JIM 42 (1991) 217.

DOI: 10.2320/matertrans1989.33.669

[4] Z.C. Zhong, X.Y. Jiang, A.L. Greer,. Nanocrystallization in Al-based amorphous alloys. J Phil. Mag. B 76 (1997) 505.

[5] A.P. Tsai,T. Kamiyama,Y. Kawamura. Formation and precipitation mechanism of nanoscale Al particles in Al-Ni base amorphous alloys. J Acta Mater. 45 (1997) 1477.

DOI: 10.1016/s1359-6454(96)00268-6

[6] T. Gloriant, A.L. Greer. Nanostructured Al88Ni4Sm8 alloys investigated by transmission electron and field-ion microscopies Nanostruct. J Mater. 10 (1998) 389.

DOI: 10.1016/s0921-5093(00)01523-9

[7] A. Inoue, H. Kimura. High-strength aluminum alloys containing nanoquasicrystalline particles. J Mater. Sci. Eng. A286 (2000) 1–10.

[8] A. Inoue, S. Sobu, D.V. Louzguine, H. Kimura, K. Sasamori. Ultrahigh strength Al-based amorphous alloys containing Sc. J Mater. Res. 19 (2004) 1539–1543.

DOI: 10.1557/jmr.2004.0206

[9] G.M. Dougherty, G.J. Shiftlet, S.J. Poon. Synthesis and microstructural evolution of Al-Ni-Fe-Gd metallic glass by mechanical alloying. J Acta Metall. Mater. 42 (1994)2275.

DOI: 10.1016/0956-7151(94)90306-9

[10] Y. Kawamura, H. Kato, A. Inoue, T. Masumoto. Workability of the supercooled liquid in the Zr65Al10Ni10Cu15 bulk metallic glass. J Appl. Phys. Lett. 67 (1995)(2008).

DOI: 10.1016/s1359-6454(97)00235-8

[11] L.L. Ye, Z.G. Liu, K. Raviprasad, M.X. Quan, M. Umemoto, Z.Q. Hu. Consolidation of MA amorphous NiTi powder by spark plasma sintering. J Mater. Sci. Eng. A 241 (1998) 290.

DOI: 10.1016/s0921-5093(97)00505-4

[12] D.J. Sordelet, E. Rozhkova, M.F. Besser M.J. Kramer. Consolidation of gas atomized Cu47Ti34Zr11Ni8 amorphous powder. J. Non-Cryst. Solids 317 (2003) 137.

DOI: 10.1016/s0022-3093(02)01994-4

In order to see related information, you need to Login.