[1]
R.Z. Valiev, et al., The innovation potential of bulk NSMs, Adv. Eng. Mater. 9 (2007) 527-532.
Google Scholar
[2]
A. Loucf, R.B. Figueiredo, T. Baudin, F. Brisset, T.G. Langdon, Microstructural evolution in an Al-6061 alloy processed by high-pressure torsion, Mater. Sci. Eng. A527 (2010) 4864-4869.
DOI: 10.1016/j.msea.2010.04.027
Google Scholar
[3]
R.Z. Valiev, Y.T. Zhu, et al., Producing bulk UFG materials by SPD, JOM 58 (2006) 33-39.
Google Scholar
[4]
H.S. Kim, M.H. Seo, S.I. Hong, Plastic deformation analysis of metals during ECAP, J. Mater. Proc. Technol. 113 (2001) 622-626.
Google Scholar
[5]
M. Murayama, K. Hono, M. Saga, M. Kikuchi, Atom probe studies on the early stages of precipitation in Al-Mg-Si alloys, Mater. Sci. Eng. A250 (1998) 127-132.
DOI: 10.1016/s0921-5093(98)00548-6
Google Scholar
[6]
G.A. Edwards, et al., The precipitation in Al-Mg-Si alloys, Acta Mater. 46 (1998) 3893-3904.
DOI: 10.1016/s1359-6454(98)00059-7
Google Scholar
[7]
S.J. Andersen, et al., The crystal structure of the β" phase, Acta Mater. 46 (1998) 3283-3298.
Google Scholar
[8]
F.D. Geuser, W. Lefebvre, D. Blavette, 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy, Philos. Mag. Letters. 86 (2006) 227-234.
DOI: 10.1080/09500830600643270
Google Scholar
[9]
J.K. Kim, H.G. Jeong, S.I. Hong, et al., Effect of aging treatment on heavily deformed microstructure of a 6061 aluminum alloy after ECAP, Scripta Mater. 45 (2001) 901-907.
DOI: 10.1016/s1359-6462(01)01109-5
Google Scholar
[10]
J.K. Kim, H.K. Kim, J.W. Park, W.J. Kim, Large enhancement in mechanical properties of the 6061 Al alloys after a single pressing by ECAP, Scripta Mater. 53 (2005) 1207-1211.
DOI: 10.1016/j.scriptamat.2005.06.014
Google Scholar
[11]
Z. Horita, Ultrafine structures controlled by giant straining process, J. Japan Inst. Light Metals, 60 (2010) 134-141.
Google Scholar
[12]
K. Ohashi, T. Fujita, K. Kaneko, Z. Horita, T.G. Langdon, The aging characteristics of an Al-Mg alloy processed by ECAP, Mater. Sci. Eng. A437 (2006) 240-247.
DOI: 10.1016/j.msea.2006.08.024
Google Scholar
[13]
W.J. Kim, J.K. Kim, T.J. Park, et al., Enhancement of strength and superplasticity in a 6061 Al alloy processed by ECAP, Metall. Mater. Trans. A33 (2002) 3155-3164.
DOI: 10.1007/s11661-002-0301-4
Google Scholar
[14]
K. Furuno, H. Akamatsu, K. Ohishi, M. Furukawa, Z. Horita, T.G. Langdon, Microstructural development in ECAP using a 60° die, Acta Mater. 52 (2004) 2497-2507.
DOI: 10.1016/j.actamat.2004.01.040
Google Scholar
[15]
A.P. Zhilyaev, et al., Using HPT for metal processing, Prog. Mater. Sci. 53 (2008) 893-979.
Google Scholar
[16]
M.P. Liu, H.J. Roven, High density hexagonal and rhombic shaped nanostructures in a fcc aluminum alloy induced by SPD at room temperature, Appl. Phys. Lett. 90 (2007) 083115-1-3.
DOI: 10.1063/1.2696540
Google Scholar
[17]
M.P. Liu, H.J. Roven, Y. Yu, J.C. Werenskiold, Deformation structures in 6082 aluminium alloy after severe plastic deformation by ECAP, Mater. Sci. Eng. A483-484 (2008) 59-63.
DOI: 10.1016/j.msea.2006.09.144
Google Scholar
[18]
V. Yamakov, et al., Deformation twinning in nc Al, Acta Mater. 50 (2002) 5005-5020.
DOI: 10.1016/s1359-6454(02)00318-x
Google Scholar
[19]
S.J. Zhou, D.L. Preston, P.S. Lomdahl, D.M. Beazley, Large-scale molecular dynamics simulations of dislocation intersection in copper, Science. 279 (1998) 1525-1527.
DOI: 10.1126/science.279.5356.1525
Google Scholar
[20]
M.P. Liu, H.J. Roven, M. Murashkin, R.Z. Valiev, Structural characterization by HRTEM of an Al-Mg alloy processed by high-pressure torsion, Mater. Sci. Eng. A503 (2009) 122-125.
DOI: 10.1016/j.msea.2008.02.053
Google Scholar
[21]
Y.H. Zhao, Y.T. Zhu, E. J. Lavernia, Strategies for improving tensile ductility of bulk nanostructured materials, Adv. Eng. Mater. 12 (2010) 769-778.
DOI: 10.1002/adem.200900335
Google Scholar
[22]
V. Yamakov, D. Wolf, S. R Phillpot, H. Gleiter, Dislocation–dislocation and dislocation–twin reactions in nanocrystalline Al by molecular dynamics simulation, Acta Mater. 51 (2003) 4135-4147.
DOI: 10.1016/s1359-6454(03)00232-5
Google Scholar
[23]
J. Marian, J. Knap, M. Ortiz, Nanovoid cavitation by dislocation emission in aluminum, Phys. Rev. Lett. 93 (2004) 165503-1-4.
DOI: 10.1103/physrevlett.93.165503
Google Scholar
[24]
M.P. Liu, H.J. Roven, X.T. Liu, M. Murashkin, R.Z. Valiev, T. Ungar, L. Balogh, Special nanostructures in Al-Mg alloys subjected to HPT, Trans. Non. Met. China. 20 (2010) 2051-(2056).
DOI: 10.1016/s1003-6326(09)60416-7
Google Scholar
[25]
C.D. Marioara, S.J. Andersen, et al., The influence of temperature and storage time at RT on nucleation of the β" phase in a 6082 alloy, Acta Mater. 51 (2003) 789-796.
DOI: 10.1016/s1359-6454(02)00470-6
Google Scholar
[26]
D.J. Chakrabarti, et al., Phase relations in Al-Mg-Si alloys, Prog. Mater. Sci. 49 (2004) 389-410.
Google Scholar
[27]
W.F. Miao, D.E. Laughlin, Effects of Cu content and preaging on precipitation characteristics in aluminum alloy 6022, Metall. Mater. Trans. A31 (2000) 361-371.
DOI: 10.1007/s11661-000-0272-2
Google Scholar
[28]
R.S. Yassar, D.P. Field, H. Weiland, The effect of predeformation on the β" and b¢ precipitates and the role of Q¢ phase in an Al-Mg-Si alloy, Scripta Mater. 53 (2005) 299-303.
DOI: 10.1016/j.scriptamat.2005.04.013
Google Scholar
[29]
J.C. Werenskiold, H.J. Roven, Microstructure and texture evolution during ECAP of an AlMgSi alloy, Mater. Sci. Eng. A410 (2005) 174-177.
DOI: 10.1016/j.msea.2005.08.049
Google Scholar
[30]
H.J. Roven, M.P. Liu, J.C. Werenskiold, Dynamic precipitation during severe plastic deformation of an Al–Mg–Si aluminium alloy, Mater. Sci. Eng. A483-484 (2008) 54-58.
DOI: 10.1016/j.msea.2006.09.142
Google Scholar