Microstructural Characterization of an Al-Mg-Si Aluminum Alloy Processed by Equal Channel Angular Pressing

Article Preview

Abstract:

In the present work, a peak-aged 6061 Al-Mg-Si aluminum alloy was subjected to equal channel angular pressing (ECAP) at 110 °C. The microstructure of the sample was characterized by high-resolution transmission electron microscope and weak-beam dark-field method. It was shown that the dislocation density in some local areas is much lower than the average dislocation density expected in the usual alloys processed by severe plastic deformation. High-resolution transmission electron microscope observations indicated that many full dislocations were dissociated into partial dislocations connected by stacking faults. In addition, a Z-shaped defect (i.e., a type of dislocation locks) probably formed by the reactions of the partials in different {111} planes was first observed in the ECAPed alloy. Furthermore, the precipitation behavior and sequence in the present ECAPed sample were identified by high-resolution transmission electron microscopy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

303-308

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, et al., The innovation potential of bulk NSMs, Adv. Eng. Mater. 9 (2007) 527-532.

Google Scholar

[2] A. Loucf, R.B. Figueiredo, T. Baudin, F. Brisset, T.G. Langdon, Microstructural evolution in an Al-6061 alloy processed by high-pressure torsion, Mater. Sci. Eng. A527 (2010) 4864-4869.

DOI: 10.1016/j.msea.2010.04.027

Google Scholar

[3] R.Z. Valiev, Y.T. Zhu, et al., Producing bulk UFG materials by SPD, JOM 58 (2006) 33-39.

Google Scholar

[4] H.S. Kim, M.H. Seo, S.I. Hong, Plastic deformation analysis of metals during ECAP, J. Mater. Proc. Technol. 113 (2001) 622-626.

Google Scholar

[5] M. Murayama, K. Hono, M. Saga, M. Kikuchi, Atom probe studies on the early stages of precipitation in Al-Mg-Si alloys, Mater. Sci. Eng. A250 (1998) 127-132.

DOI: 10.1016/s0921-5093(98)00548-6

Google Scholar

[6] G.A. Edwards, et al., The precipitation in Al-Mg-Si alloys, Acta Mater. 46 (1998) 3893-3904.

DOI: 10.1016/s1359-6454(98)00059-7

Google Scholar

[7] S.J. Andersen, et al., The crystal structure of the β" phase, Acta Mater. 46 (1998) 3283-3298.

Google Scholar

[8] F.D. Geuser, W. Lefebvre, D. Blavette, 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy, Philos. Mag. Letters. 86 (2006) 227-234.

DOI: 10.1080/09500830600643270

Google Scholar

[9] J.K. Kim, H.G. Jeong, S.I. Hong, et al., Effect of aging treatment on heavily deformed microstructure of a 6061 aluminum alloy after ECAP, Scripta Mater. 45 (2001) 901-907.

DOI: 10.1016/s1359-6462(01)01109-5

Google Scholar

[10] J.K. Kim, H.K. Kim, J.W. Park, W.J. Kim, Large enhancement in mechanical properties of the 6061 Al alloys after a single pressing by ECAP, Scripta Mater. 53 (2005) 1207-1211.

DOI: 10.1016/j.scriptamat.2005.06.014

Google Scholar

[11] Z. Horita, Ultrafine structures controlled by giant straining process, J. Japan Inst. Light Metals, 60 (2010) 134-141.

Google Scholar

[12] K. Ohashi, T. Fujita, K. Kaneko, Z. Horita, T.G. Langdon, The aging characteristics of an Al-Mg alloy processed by ECAP, Mater. Sci. Eng. A437 (2006) 240-247.

DOI: 10.1016/j.msea.2006.08.024

Google Scholar

[13] W.J. Kim, J.K. Kim, T.J. Park, et al., Enhancement of strength and superplasticity in a 6061 Al alloy processed by ECAP, Metall. Mater. Trans. A33 (2002) 3155-3164.

DOI: 10.1007/s11661-002-0301-4

Google Scholar

[14] K. Furuno, H. Akamatsu, K. Ohishi, M. Furukawa, Z. Horita, T.G. Langdon, Microstructural development in ECAP using a 60° die, Acta Mater. 52 (2004) 2497-2507.

DOI: 10.1016/j.actamat.2004.01.040

Google Scholar

[15] A.P. Zhilyaev, et al., Using HPT for metal processing, Prog. Mater. Sci. 53 (2008) 893-979.

Google Scholar

[16] M.P. Liu, H.J. Roven, High density hexagonal and rhombic shaped nanostructures in a fcc aluminum alloy induced by SPD at room temperature, Appl. Phys. Lett. 90 (2007) 083115-1-3.

DOI: 10.1063/1.2696540

Google Scholar

[17] M.P. Liu, H.J. Roven, Y. Yu, J.C. Werenskiold, Deformation structures in 6082 aluminium alloy after severe plastic deformation by ECAP, Mater. Sci. Eng. A483-484 (2008) 59-63.

DOI: 10.1016/j.msea.2006.09.144

Google Scholar

[18] V. Yamakov, et al., Deformation twinning in nc Al, Acta Mater. 50 (2002) 5005-5020.

DOI: 10.1016/s1359-6454(02)00318-x

Google Scholar

[19] S.J. Zhou, D.L. Preston, P.S. Lomdahl, D.M. Beazley, Large-scale molecular dynamics simulations of dislocation intersection in copper, Science. 279 (1998) 1525-1527.

DOI: 10.1126/science.279.5356.1525

Google Scholar

[20] M.P. Liu, H.J. Roven, M. Murashkin, R.Z. Valiev, Structural characterization by HRTEM of an Al-Mg alloy processed by high-pressure torsion, Mater. Sci. Eng. A503 (2009) 122-125.

DOI: 10.1016/j.msea.2008.02.053

Google Scholar

[21] Y.H. Zhao, Y.T. Zhu, E. J. Lavernia, Strategies for improving tensile ductility of bulk nanostructured materials, Adv. Eng. Mater. 12 (2010) 769-778.

DOI: 10.1002/adem.200900335

Google Scholar

[22] V. Yamakov, D. Wolf, S. R Phillpot, H. Gleiter, Dislocation–dislocation and dislocation–twin reactions in nanocrystalline Al by molecular dynamics simulation, Acta Mater. 51 (2003) 4135-4147.

DOI: 10.1016/s1359-6454(03)00232-5

Google Scholar

[23] J. Marian, J. Knap, M. Ortiz, Nanovoid cavitation by dislocation emission in aluminum, Phys. Rev. Lett. 93 (2004) 165503-1-4.

DOI: 10.1103/physrevlett.93.165503

Google Scholar

[24] M.P. Liu, H.J. Roven, X.T. Liu, M. Murashkin, R.Z. Valiev, T. Ungar, L. Balogh, Special nanostructures in Al-Mg alloys subjected to HPT, Trans. Non. Met. China. 20 (2010) 2051-(2056).

DOI: 10.1016/s1003-6326(09)60416-7

Google Scholar

[25] C.D. Marioara, S.J. Andersen, et al., The influence of temperature and storage time at RT on nucleation of the β" phase in a 6082 alloy, Acta Mater. 51 (2003) 789-796.

DOI: 10.1016/s1359-6454(02)00470-6

Google Scholar

[26] D.J. Chakrabarti, et al., Phase relations in Al-Mg-Si alloys, Prog. Mater. Sci. 49 (2004) 389-410.

Google Scholar

[27] W.F. Miao, D.E. Laughlin, Effects of Cu content and preaging on precipitation characteristics in aluminum alloy 6022, Metall. Mater. Trans. A31 (2000) 361-371.

DOI: 10.1007/s11661-000-0272-2

Google Scholar

[28] R.S. Yassar, D.P. Field, H. Weiland, The effect of predeformation on the β" and b¢ precipitates and the role of Q¢ phase in an Al-Mg-Si alloy, Scripta Mater. 53 (2005) 299-303.

DOI: 10.1016/j.scriptamat.2005.04.013

Google Scholar

[29] J.C. Werenskiold, H.J. Roven, Microstructure and texture evolution during ECAP of an AlMgSi alloy, Mater. Sci. Eng. A410 (2005) 174-177.

DOI: 10.1016/j.msea.2005.08.049

Google Scholar

[30] H.J. Roven, M.P. Liu, J.C. Werenskiold, Dynamic precipitation during severe plastic deformation of an Al–Mg–Si aluminium alloy, Mater. Sci. Eng. A483-484 (2008) 54-58.

DOI: 10.1016/j.msea.2006.09.142

Google Scholar