[1]
F.L. Zhang, C.Y. Wang, M. Zhu, Nanostructured WC/Co composite powder prepared by high energy ball milling, Scripta Mater. 49 (2003) 1123-1128.
DOI: 10.1016/j.scriptamat.2003.08.009
Google Scholar
[2]
L.E. Toth, Transition metal carbides and nitrides, Academic, New York, (1971).
Google Scholar
[3]
C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci. 46 (2001) 1-184.
Google Scholar
[4]
J. Zhang, J.H. Lee, D.Y. Maeng and C.W. Won, Synthesis of tungsten monocarbide by self-propagating high-temperature synthesis in the presence of an activities additive, J. Mater. Sci. 36 (2001) 3233-3238.
Google Scholar
[5]
G.B. Schaffer, P.G. McCormick, Reactions during mechanical alloying, Metall. Trans. A21 (1990) 2789–2794.
Google Scholar
[6]
G.L. Caër, E. Bauer-Grosse, A. Pianelli and E. Bouzy, Mechanically driven syntheses of carbides and silicides, J. Mater. Sci. 25 (1990) 4726-4731.
DOI: 10.1007/bf01129932
Google Scholar
[7]
P. Matteazzi, G.L. Caër, Room-temperature mechanosynthesis of carbides by grinding of elemental powders, J. Am. Ceram. soc. 74 (1991) 1382-1390.
DOI: 10.1111/j.1151-2916.1991.tb04116.x
Google Scholar
[8]
G.M. Wang, S.J. Campbell, A. Calka and W.A. Kaczmarek, Synthesis and structural evolution of tungsten carbide prepared by ball milling, J. Mater. Sci. 32 (1997) 1461-1467.
Google Scholar
[9]
M. Sherif El-Eskandarany, A.A. Mahday, H.A. Ahmed and A.H. Amer, Synthesis and characterizations of ball-milled nanocrystalline WC and nanocomposite WC-Co powders and subsequent consolidations, J. Alloy. Compd. 312 (2000) 315-325.
DOI: 10.1016/s0925-8388(00)01155-5
Google Scholar
[10]
X.M. Ma, G. Ji, Nanostructured WC-Co alloy prepared by mechanical alloying, J. Alloy. Compd. 245 (1996) 30-32.
Google Scholar
[11]
X.M. Ma, L. Zhao, G. Ji and Y.D. Dong, Preparation and structure of bulk nanostructured WC-Co alloy by high energy ball-milling, J. Mater. Sci. Lett. 16 (1997) 968-970.
Google Scholar
[12]
Y. Ning, Synthesis and consolidation of ball-milled nanocomposite WC-Co powders compact, Rare Metal. Cement. Carbide. 31 (2003) 53-56 (in chinese).
Google Scholar
[13]
L. Liu, B. Li, X.Z. Ding, X.M. Ma, Z.Z. Qi, and Y.D. Dong, Preparation of nanocrystalline metal-carbides by mechanical alloying, Chinese Sci. Bull. 39 (1994) 1166-1170.
Google Scholar
[14]
S. Bolokang, C. Banganayi, M. Phasha, Effect of C and milling parameters on the synthesis of WC powders by mechanical alloying, Int. J. Refract. Met. H. 28 (2010) 211-216.
DOI: 10.1016/j.ijrmhm.2009.09.006
Google Scholar
[15]
K. Yamada, T. Takahashi, M. Motoyama, X-ray spectroscopic analysis of solid state reaction during mechanical alloying, Spectrochim. Acta. B54 (1999) 197-203.
DOI: 10.1016/s0584-8547(98)00203-1
Google Scholar
[16]
R.M. Davis, B. McDermott, C.C. Koch, Mechanical alloying of brittle materials, Metall. Trans. A19 (1988) 2867-2874.
DOI: 10.1007/bf02647712
Google Scholar
[17]
D.L. Jia, A.Y. Ba, Y.P. Ren, Accelerating mechanism of Nickel during synthesis of WC powders, Mater. Mech. Eng. 32 (2008) 4-44 (in chinese).
Google Scholar
[18]
S.I. Cha, S.H. Hong, Fabrication of nanocrystalline WC powders by mechanical alloying of elemental powders, J. Metastab. Nanocryst. Mater. 15-16 (2003) 319-324.
DOI: 10.4028/www.scientific.net/jmnm.15-16.319
Google Scholar
[19]
T. Laszlo, Self-sustaining reactions induced by ball milling, Prog. Mater. Sci. 47 (2002) 355-414.
Google Scholar
[20]
M. Sherif El-Eskandarany, M. Omori, M. Ishikuro, T.J. Konno, K. Takada, K. Sumiyama, T. Hirai and K. Suzuki, Synthesis of full-density nanocrystalline tungsten carbides by reduction of tungstic oxide at room temperature, Metall. Mater. Trans. A 27 (1996).
DOI: 10.1007/bf02595669
Google Scholar
[21]
M. Sherif El-Eskandarany, Fabrication and characterizations of new nanocomposite WC/Al2O3 materials by room temperature ball milling and subsequent consolidation, J. Alloy. Compd. 391 (2005) 228-235.
DOI: 10.1016/j.jallcom.2004.08.064
Google Scholar
[22]
M.L. Zhang, S.G. Zhu, J. Ma and C.X. Wu, Preparation of WC/MgO composite nanopowders by high-energy reactive ball milling and their plasma-activated sintering, Powder Metall. Met. Ceram. 47 (2008) 525-530.
DOI: 10.1007/s11106-008-9054-y
Google Scholar
[23]
C.X. Wu, S.G. Zhu, J. Ma and M.L. Zhang, Synthesis and formation mechanisms of nanocomposite WC-MgO powders by high-energy reactive milling, J. Alloy. Compd. 478 (2009) 615-619.
DOI: 10.1016/j.jallcom.2008.11.100
Google Scholar
[24]
Y. Chen, T. Hwang, M. Marsh and J.S. Williams, Study on mechanism of mechanical activation, Mater. Sci. Eng. A226-228 (1997) 95-98.
Google Scholar
[25]
M.L. Oveçoglu, B. Ozkal, Mechanochemical synthesis of WC powders by mechanical alloying, Key Eng. Mater. 264-268 (2004) 89-92.
DOI: 10.4028/www.scientific.net/kem.264-268.89
Google Scholar
[26]
M.H. Enayati, G.R. Aryanpour, A. Ebnonnasir, Production of nanostructured WC–Co powder by ball milling, Int. J. Refract. Met. H. 27 (2009) 159-163.
DOI: 10.1016/j.ijrmhm.2008.06.005
Google Scholar
[27]
Q.D. Xie, Z.Q. Li, Structural evolution of tungsten carbide synthesized by ball milling, J. Mater. Eng. 21 (2003) 187-190. (in chinese).
Google Scholar
[28]
S. Mi, T.H. Courtney, Synthesis of WC and WC-Co cermets by mechanical alloying and subsequent hot isostatic pressing, Scripta Mater. 38 (1997) 171-176.
DOI: 10.1016/s1359-6462(97)00410-7
Google Scholar
[29]
L.Y. Dai, M.Q. Zeng, Y.Q. Tong, L.Z. Ouyang, M. Zhu and Y.Y. Li, Investigation on mechanical alloying assisted by external fields, J. Funct. Mater. 36 (2005) 1158-1161 (in chinese).
Google Scholar
[30]
M. Zhu, L.Y. Dai, B. Cao, M.Q. Zeng, L.Z. Ouyang, Y.Q. Tong and B. Li, China Patent ZL 200510036231. 9. (2007).
Google Scholar
[31]
L.Y. Dai, B. Cao, M. Zhu, Comparison on refinement of iron powder by ball milling assisted by different external fields, Acta Metal. Sin. 19 (2006) 411-417.
DOI: 10.1016/s1006-7191(06)62081-4
Google Scholar
[32]
M. Zhu, L.Y. Dai, N.S. Gu, B. Cao and L.Z. Ouyang, Synergism of mechanical milling and dielectric barrier discharge plasma on the fabrication of nano-powders of pure metals and tungsten carbide, J. Alloy. Compd. 478 (2009) 624-629.
DOI: 10.1016/j.jallcom.2008.11.122
Google Scholar
[33]
H.C. Thejaswini, A. Majumdar, T.M. Tun and R. Hippler, Plasma chemical reactions in C2H2/N2, C2H4/N2, and C2H6/N2 gas mixtures of a laboratory dielectric barrier discharge, Adv. Space Res. 48 (2011) 857-861.
DOI: 10.1016/j.asr.2011.04.020
Google Scholar
[34]
Y. Qin, J.X. Zou, C. Dong, X.G. Wang, A.M. Wu, S.Z. Hao and Q.F. Guan, Temperature–stress fields and related phenomena induced by a high current pulsed electron beam, Nucl. Instrum. Methods Phys. Res. B225 (2004) 544-554.
DOI: 10.1016/j.nimb.2004.06.008
Google Scholar