Synthesis of Nano-WC by High-Energy Ball Milling

Article Preview

Abstract:

Nanosized tungsten carbide (nanoWC) has been widely studied and applied in many industries as hard materials since it has good combination of high hardness and strength. Thermal mechanical alloying method consisting of high-energy ball milling and subsequent carbonization is a common synthetic approach to prepare nanoWC. In this paper, a special milling process has been reviewed, in which the dielectric barrier discharge plasma (DBDP) is introduced, for the preparation of nanoWC. The DBDP milling renders the W+C powders with specific flake-like structure possible owing to the cooperative effect of DBDP and mechanical milling. The obtained W+C powders are activated significantly within shortened milling period. Furthermore, pure nanoWC powders can be synthesized after subsequent carbonization at a significantly lowered temperature. DBDP milling is demonstrated to be an efficient way to synthesize nanoWC.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

327-334

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.L. Zhang, C.Y. Wang, M. Zhu, Nanostructured WC/Co composite powder prepared by high energy ball milling, Scripta Mater. 49 (2003) 1123-1128.

DOI: 10.1016/j.scriptamat.2003.08.009

Google Scholar

[2] L.E. Toth, Transition metal carbides and nitrides, Academic, New York, (1971).

Google Scholar

[3] C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci. 46 (2001) 1-184.

Google Scholar

[4] J. Zhang, J.H. Lee, D.Y. Maeng and C.W. Won, Synthesis of tungsten monocarbide by self-propagating high-temperature synthesis in the presence of an activities additive, J. Mater. Sci. 36 (2001) 3233-3238.

Google Scholar

[5] G.B. Schaffer, P.G. McCormick, Reactions during mechanical alloying, Metall. Trans. A21 (1990) 2789–2794.

Google Scholar

[6] G.L. Caër, E. Bauer-Grosse, A. Pianelli and E. Bouzy, Mechanically driven syntheses of carbides and silicides, J. Mater. Sci. 25 (1990) 4726-4731.

DOI: 10.1007/bf01129932

Google Scholar

[7] P. Matteazzi, G.L. Caër, Room-temperature mechanosynthesis of carbides by grinding of elemental powders, J. Am. Ceram. soc. 74 (1991) 1382-1390.

DOI: 10.1111/j.1151-2916.1991.tb04116.x

Google Scholar

[8] G.M. Wang, S.J. Campbell, A. Calka and W.A. Kaczmarek, Synthesis and structural evolution of tungsten carbide prepared by ball milling, J. Mater. Sci. 32 (1997) 1461-1467.

Google Scholar

[9] M. Sherif El-Eskandarany, A.A. Mahday, H.A. Ahmed and A.H. Amer, Synthesis and characterizations of ball-milled nanocrystalline WC and nanocomposite WC-Co powders and subsequent consolidations, J. Alloy. Compd. 312 (2000) 315-325.

DOI: 10.1016/s0925-8388(00)01155-5

Google Scholar

[10] X.M. Ma, G. Ji, Nanostructured WC-Co alloy prepared by mechanical alloying, J. Alloy. Compd. 245 (1996) 30-32.

Google Scholar

[11] X.M. Ma, L. Zhao, G. Ji and Y.D. Dong, Preparation and structure of bulk nanostructured WC-Co alloy by high energy ball-milling, J. Mater. Sci. Lett. 16 (1997) 968-970.

Google Scholar

[12] Y. Ning, Synthesis and consolidation of ball-milled nanocomposite WC-Co powders compact, Rare Metal. Cement. Carbide. 31 (2003) 53-56 (in chinese).

Google Scholar

[13] L. Liu, B. Li, X.Z. Ding, X.M. Ma, Z.Z. Qi, and Y.D. Dong, Preparation of nanocrystalline metal-carbides by mechanical alloying, Chinese Sci. Bull. 39 (1994) 1166-1170.

Google Scholar

[14] S. Bolokang, C. Banganayi, M. Phasha, Effect of C and milling parameters on the synthesis of WC powders by mechanical alloying, Int. J. Refract. Met. H. 28 (2010) 211-216.

DOI: 10.1016/j.ijrmhm.2009.09.006

Google Scholar

[15] K. Yamada, T. Takahashi, M. Motoyama, X-ray spectroscopic analysis of solid state reaction during mechanical alloying, Spectrochim. Acta. B54 (1999) 197-203.

DOI: 10.1016/s0584-8547(98)00203-1

Google Scholar

[16] R.M. Davis, B. McDermott, C.C. Koch, Mechanical alloying of brittle materials, Metall. Trans. A19 (1988) 2867-2874.

DOI: 10.1007/bf02647712

Google Scholar

[17] D.L. Jia, A.Y. Ba, Y.P. Ren, Accelerating mechanism of Nickel during synthesis of WC powders, Mater. Mech. Eng. 32 (2008) 4-44 (in chinese).

Google Scholar

[18] S.I. Cha, S.H. Hong, Fabrication of nanocrystalline WC powders by mechanical alloying of elemental powders, J. Metastab. Nanocryst. Mater. 15-16 (2003) 319-324.

DOI: 10.4028/www.scientific.net/jmnm.15-16.319

Google Scholar

[19] T. Laszlo, Self-sustaining reactions induced by ball milling, Prog. Mater. Sci. 47 (2002) 355-414.

Google Scholar

[20] M. Sherif El-Eskandarany, M. Omori, M. Ishikuro, T.J. Konno, K. Takada, K. Sumiyama, T. Hirai and K. Suzuki, Synthesis of full-density nanocrystalline tungsten carbides by reduction of tungstic oxide at room temperature, Metall. Mater. Trans. A 27 (1996).

DOI: 10.1007/bf02595669

Google Scholar

[21] M. Sherif El-Eskandarany, Fabrication and characterizations of new nanocomposite WC/Al2O3 materials by room temperature ball milling and subsequent consolidation, J. Alloy. Compd. 391 (2005) 228-235.

DOI: 10.1016/j.jallcom.2004.08.064

Google Scholar

[22] M.L. Zhang, S.G. Zhu, J. Ma and C.X. Wu, Preparation of WC/MgO composite nanopowders by high-energy reactive ball milling and their plasma-activated sintering, Powder Metall. Met. Ceram. 47 (2008) 525-530.

DOI: 10.1007/s11106-008-9054-y

Google Scholar

[23] C.X. Wu, S.G. Zhu, J. Ma and M.L. Zhang, Synthesis and formation mechanisms of nanocomposite WC-MgO powders by high-energy reactive milling, J. Alloy. Compd. 478 (2009) 615-619.

DOI: 10.1016/j.jallcom.2008.11.100

Google Scholar

[24] Y. Chen, T. Hwang, M. Marsh and J.S. Williams, Study on mechanism of mechanical activation, Mater. Sci. Eng. A226-228 (1997) 95-98.

Google Scholar

[25] M.L. Oveçoglu, B. Ozkal, Mechanochemical synthesis of WC powders by mechanical alloying, Key Eng. Mater. 264-268 (2004) 89-92.

DOI: 10.4028/www.scientific.net/kem.264-268.89

Google Scholar

[26] M.H. Enayati, G.R. Aryanpour, A. Ebnonnasir, Production of nanostructured WC–Co powder by ball milling, Int. J. Refract. Met. H. 27 (2009) 159-163.

DOI: 10.1016/j.ijrmhm.2008.06.005

Google Scholar

[27] Q.D. Xie, Z.Q. Li, Structural evolution of tungsten carbide synthesized by ball milling, J. Mater. Eng. 21 (2003) 187-190. (in chinese).

Google Scholar

[28] S. Mi, T.H. Courtney, Synthesis of WC and WC-Co cermets by mechanical alloying and subsequent hot isostatic pressing, Scripta Mater. 38 (1997) 171-176.

DOI: 10.1016/s1359-6462(97)00410-7

Google Scholar

[29] L.Y. Dai, M.Q. Zeng, Y.Q. Tong, L.Z. Ouyang, M. Zhu and Y.Y. Li, Investigation on mechanical alloying assisted by external fields, J. Funct. Mater. 36 (2005) 1158-1161 (in chinese).

Google Scholar

[30] M. Zhu, L.Y. Dai, B. Cao, M.Q. Zeng, L.Z. Ouyang, Y.Q. Tong and B. Li, China Patent ZL 200510036231. 9. (2007).

Google Scholar

[31] L.Y. Dai, B. Cao, M. Zhu, Comparison on refinement of iron powder by ball milling assisted by different external fields, Acta Metal. Sin. 19 (2006) 411-417.

DOI: 10.1016/s1006-7191(06)62081-4

Google Scholar

[32] M. Zhu, L.Y. Dai, N.S. Gu, B. Cao and L.Z. Ouyang, Synergism of mechanical milling and dielectric barrier discharge plasma on the fabrication of nano-powders of pure metals and tungsten carbide, J. Alloy. Compd. 478 (2009) 624-629.

DOI: 10.1016/j.jallcom.2008.11.122

Google Scholar

[33] H.C. Thejaswini, A. Majumdar, T.M. Tun and R. Hippler, Plasma chemical reactions in C2H2/N2, C2H4/N2, and C2H6/N2 gas mixtures of a laboratory dielectric barrier discharge, Adv. Space Res. 48 (2011) 857-861.

DOI: 10.1016/j.asr.2011.04.020

Google Scholar

[34] Y. Qin, J.X. Zou, C. Dong, X.G. Wang, A.M. Wu, S.Z. Hao and Q.F. Guan, Temperature–stress fields and related phenomena induced by a high current pulsed electron beam, Nucl. Instrum. Methods Phys. Res. B225 (2004) 544-554.

DOI: 10.1016/j.nimb.2004.06.008

Google Scholar