Atomistic Simulation Study on the Tensile Deformation Behaviour of Nanocrystalline Ni

Article Preview

Abstract:

Using molecular dynamics simulations, the influence of transverse tensile stresses on the plastic deformation behaviour of nanocrystalline (NC) Ni under tension has been investigated. The sample with an average grain size of 20 nm was created using a Voronoi construction, and two different tensile tests of the sample were performed at a constant strain rate. The simulation results revealed that more partials were emitted from the grain boundaries and propagate into the grain interiors after adding the transverse tensile stress, enhancing the dislocation density in the grain interiors. This increased dislocation density can cause additional strain hardening observed in the stress strain curve. Meanwhile, it was observed from microstructures that nanovoids are easier to form and coalesce into cracks under the biaxial stress state, causing strain softening. The two competing effects of the transverse tensile stress on the plastic deformation behaviour of NC Ni resulted in the flow stresses from 4% to 10% strain in the biaxial stress state slightly larger than those in the uniaxial stress state.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

315-320

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.S. Kumar, H. Van Swygenhoven, S. Suresh. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51 (2003) 5743-5774.

DOI: 10.1016/j.actamat.2003.08.032

Google Scholar

[2] M.A. Meyers, A. Mishra, D.J. Benson. Mechanical properties of nanocrystalline meterials. Prog. Mater. Sci. 51 (2006) 427-556.

Google Scholar

[3] E. Ma, Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scr. Mater. 49 (2003) 663-668.

DOI: 10.1016/s1359-6462(03)00396-8

Google Scholar

[4] T.H. Fang, W.L. Li, N.R. Tao, K. Lu. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science. 331 (2011) 1587-1590.

DOI: 10.1126/science.1200177

Google Scholar

[5] S.L. Semiatin, H.R. Piehler, Deformation of sandwich sheet materials in uniaxial tension. Metall. Trans. A. 10 (1979) 85-96.

DOI: 10.1007/bf02686411

Google Scholar

[6] Y. Xiang, T. Li, Z.G. Suo, J.J. Vlassak, High ductility of a metal film adherent on a polymer substrate. Appl. Phys. Lett. 87 (2005) 161910.

DOI: 10.1063/1.2108110

Google Scholar

[7] A.C. Lund, T.G. Nieh, C.A. Schuh, Tension/compression strength asymmetry in a simulated nanocrystalline metal. Phys. Rev. B 69 (2004) 012101.

DOI: 10.1103/physrevb.69.012101

Google Scholar

[8] A.C. Lund, C.A. Schuh, Strength asymmetry in nanocrystalline metals under multiaxial loading. Acta Mater. 53 (2005) 3193-3205.

DOI: 10.1016/j.actamat.2005.03.023

Google Scholar

[9] Y. Lu, J. Song, J.Y. Huang, J. Lou, Fracture of sub-20nm ultrathin gold nanowires. Adv. Funct. Mater. 21 (2011) 3982-3989.

DOI: 10.1002/adfm.201101224

Google Scholar

[10] Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B. 59 (1999) 3393-3407.

DOI: 10.1103/physrevb.59.3393

Google Scholar

[11] S. Brandstetter, H. Van Swygenhoven, et al., From micro- to macroplasticity. Adv. Mater. 18 (2006) 1545-1548.

DOI: 10.1002/adma.200600397

Google Scholar

[12] H. Van Swygenhoven, P.M. Derlet, A.G. Froseth, Stacking fault energies and slip in nanocrystalline metals. Nature Mater. 3 (2004) 399-403.

DOI: 10.1038/nmat1136

Google Scholar

[13] X.L. Wu, Y.T. Zhu, Y.G. Wei, Q. Wei, Strong strain hardening in nanocrystalline nickel. Phys. Rev. Lett. 103 (2009) 205504.

DOI: 10.1103/physrevlett.103.205504

Google Scholar

[14] E. Bitzek, C. Brandl, P.M. Derlet, H.V. Swygenhoven, Dislocation cross-slip in nanocrystalline fcc metals. Phys. Rev. Lett. 100 (2008) 235501.

DOI: 10.1103/physrevlett.100.235501

Google Scholar