A Strengthening Model of Cu-Cr In Situ Fibrous Composites Produced by Equal Channel Angular Pressing

Article Preview

Abstract:

The composite filament structure was produced in the Cu-5.7%Cr and Cu-12.4%Cr as-cast alloy ingots by using equal channel angular pressing (ECAP) at room temperature. Optical and TEM microstructure, micro-hardness, tensile strength and electrical conductivity of ECAPed samples were investigated. The rotation and spreading of Cr particles took place during ECAP, and resulted in long thin in-situ filaments. The tensile strength increased with the number of the ECAP passes. A strengthening model was recommended to predict the enhancement of the tensile strength in Cu-Cr in situ fibrous composites.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

321-326

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.A. Spitzig, Strengthening in heavily deformation processed Cu-20% Nb, Acta Metall. 39(1991) 1085-1090.

DOI: 10.1016/0956-7151(91)90195-7

Google Scholar

[2] A. Benghalem, D.G. Morris, Microstructure and strength of wire-drawn Cu-Ag filamentary composites, Acta Mater. 45 (1997) 397-406.

DOI: 10.1016/s1359-6454(96)00152-8

Google Scholar

[3] C. Biselli, D.G. Morris, Microstructure and strength of Cu-Fe in Situ composites after very high drawing strains, Acta Mater. 44 (1996) 493-504.

DOI: 10.1016/1359-6454(95)00212-x

Google Scholar

[4] D. Raabe, K. Miyake, H. Takahara, Processing, microstructure, and properties of ternary high-strength Cu–Cr–Ag in situ composites, Mater. Sci. Eng. A 291 (2000) 186-197.

DOI: 10.1016/s0921-5093(00)00981-3

Google Scholar

[5] V.M. Segal, K.T. Hartwig, R.E. Goforth, In situ composites processed by simple shear, Mater. Sci. Eng. A 224 (1997) 107-115.

DOI: 10.1016/s0921-5093(96)10539-6

Google Scholar

[6] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[7] L.R. Cornwell, K.T. Hartwig, R.E. Goforth, S.L. Semiatin, The equal channel angular extrusion process for materials processing, Mater. Chara. 37 (1996) 295-300.

DOI: 10.1016/s1044-5803(97)80018-6

Google Scholar

[8] A. Benghalem, C. Biselli, D.G. Morris, Processing and properties of ultrafine laminated and fibre reinforced ductile in situ composites, Mater. Sci. Tech. 14 (1998) 527-530.

DOI: 10.1179/mst.1998.14.6.527

Google Scholar

[9] T.G. Langdon, M Furukawa, M. Nemoto, Z. Horita, Using equal-channel angular pressing for refining grain size, JOM 52 (2000) 30-33.

DOI: 10.1007/s11837-000-0128-7

Google Scholar

[10] J. Bevk, J.P. Harbison, J.L. Bell, Anomalous increase in strength of in situ formed Cu-Nb multifilamentary composites, J. Appl. Phys. 49 (1978) 6031-6038.

DOI: 10.1063/1.324573

Google Scholar

[11] W.A. Spitzig, A.R. Pelton, F. C. Laabs, Characterization of the strength and microstructure of heavily cold worked Cu-Nb composites, Acta Metall. 35 (1987) 2427-2442.

DOI: 10.1016/0001-6160(87)90140-4

Google Scholar