Indentation Stress Relaxation Behavior in As-Deposited and Rolling Nanocrystalline NiFe

Article Preview

Abstract:

The stress relaxation behavior of as-deposited and rolling nanocrystalline NiFe alloy was studied by nanoindentation tests. The results indicated that both the hardness and activation volume of rolling NiFe are larger than that of as-deposited samples. Furthermore, the hardness decreases with increasing indentation depth. The reduction of indentation stress during holding becomes much faster with decreasing the indentation depth. Dislocation density is remarkably enhanced by rolling deformation, leading to the hardening behavior. Dislocation multiplication and accumulation mediated process is believed to the dominant plastic deformation mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

352-356

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51 (2006) 427.

Google Scholar

[2] V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Nature Mater. 3 (2004) 43.

Google Scholar

[3] H. Van Swygenhoven, P.M. Derlet, A.G. Froseth, Nature Mater. 3 (2004) 399.

Google Scholar

[4] S.Y. Chang, T.K. Chang, J. App. Phys. 101 (2007) 033507.

Google Scholar

[5] Z.H. Cao, P.Y. Li, H.M. Lu, Y.L. Huang, Y.C. Zhou, X.K. Meng, Scr. Mater. 60 (2009) 415.

Google Scholar

[6] Y.B. Wang, B.Q. Li, M.L. Sui, S.X. Mao, Appl. Phys. Lett. 92 (2008) 011903.

Google Scholar

[7] S. Ni, Y.B. Wang, X.Z. Liao, R.B. Figueiredo, H.Q. Li, Y.H. Zhao, E.J. Lavernia, S.P. Ringer, T.G. Langdon, Y.T. Zhu, Mater. Sci. Eng. A 528 (2011) 4807.

Google Scholar

[8] R. Valiev, Nature Mater. 3 (2004) 511.

Google Scholar

[9] X.L. Wu, B. Li, E. Ma, Appl. Phys. Lett. 91 (2007) 141908.

Google Scholar

[10] G.Y. Wang, Z.H. Jiang, Q. Jiang, J.S. Lian, J. Appl. Phys. 104 (2008) 084305.

Google Scholar

[11] L. Li, T. Ungár, Y.D. Wang, J.R. Morris, G. Tichy, J. Lendvai, Y.L. Yang, Y. Ren, H. Choo, P.K. Liaw, Acta Mater. 57 (2009) 4988.

DOI: 10.1016/j.actamat.2009.07.002

Google Scholar

[12] L. Li, T. Ungár, Y.D. Wang, J. Fan, Y.L. Yang, N. Jia, Y. Ren, G. Tichy, J. Lendvai, H. Choo, P.K. Liaw Scr. Mater. 60 (2009) 317.

Google Scholar

[13] S. Ni, Y.B. Wang, X.Z. Liao, S.N. Alhajeri, H.Q. Li, Y.H. Zhao, E.J. Lavernia, S.P. Ringer, T.G. Langdon, Y.T. Zhu, Mater. Sci. Eng. A 528 (2011) 3398.

DOI: 10.1016/j.msea.2011.01.017

Google Scholar

[14] X.L. Wu, Y.T. Zhu, Y.G. Wei, Q. Wei, Phys. Rev. Lett. 103 (2009) 205504.

Google Scholar

[15] Z.H. Cao, P.Y. Li, Z.H. Jiang, X.K. Meng, J Phys D Appl Phys 2011; 44: 295403.

Google Scholar

[16] P.Y. Li, H.M. Lu, Z.H. Cao, S.C. Tang, X.K. Meng, X.S. Li, Z.H. Jiang. Appl. Phys. Lett. 94 (2009) 213112.

Google Scholar

[17] H. Li, A.H.W. Ngan, J. Mater. Res. 19 (2004)513.

Google Scholar

[18] Y.B. Wang, J.C. Ho, X.Z. Liao, H.Q. Li, S. Ringer, Y.T. Zhu, Appl. Phys. Lett. 94 (2009) 011908.

Google Scholar

[19] D.S. Gianola, S.V. Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven, K.J. Hemker, Acta Mater. 54 (2006) 2253.

DOI: 10.1016/j.actamat.2006.01.023

Google Scholar

[20] F. Sansoz, V. Dupont, Appl. Phys. Lett. 89 (2006) 111901.

Google Scholar

[21] F.D. Torre, P. Spätig, R. Schäublin, M. Victoria, Acta Mater. 53 (2005) 2337.

Google Scholar

[22] Y.M. Wang, A.V. Hamza, E. Ma, Appl. Phys. Lett. 86 (2005) 241917.

Google Scholar

[23] E.V. Kozlov, A.N. Zhdanov, N.A. Popova, E.E. Pekarskaya, N.A. Koneva, Mater. Sci. Eng. A 387-389 (2004) 789.

Google Scholar

[24] H. Van Swygenhoven, P.M. Derlet, A.G. Frøseth, Acta Mater. 54 (2006) (1975).

Google Scholar