Microstructural Evolution of Fe-Based Metallic Glass/2024-Al Powder during High Energy Ball Milling Process

Article Preview

Abstract:

Nanostructured Al alloy powder was prepared by ball milling of a mixture of Fe-based metallic glass (FMG) powder and 2024-Al alloy powder. Microstructural evolution and mechanical properties of the milled composite powder were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and micro-hardness test. It is revealed that after 24h milling, the grain size of the Al alloy powder reduced to about 30nm, and the FMG particles were uniformly distributed throughout the Al matrix. The mechanical test indicated that the micro-hardness of the powder was significantly improved.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

335-340

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Musin et al., High strain rate super plasticity in a commercial Al-Mg-Sc alloy, Scripta Mater. 50 (2004) 511-516.

DOI: 10.1016/j.scriptamat.2003.10.021

Google Scholar

[2] V. Vidal, Z.R. Zhang, and B. Verlinden, Precipitation hardening and grain refinement in an Al-4. 2 wt. % Mg-1. 2 wt. % Cu processed by ECAP, Mater. Sci. 43 (2008) 7418-7425.

DOI: 10.1007/s10853-008-2746-3

Google Scholar

[3] Y.K. Ito, Z.J. Horita, Microstructural evolution in pure aluminum processed by high-pressure torsion, Mater. Sci. Eng. A. 503 (2009) 32-36.

DOI: 10.1016/j.msea.2008.03.055

Google Scholar

[4] F.C. Liu, Z.Y. Ma, and L.Q. Cheng, Low-temperature super plasticity of Al-Mg-Sc alloy produced by friction stir processing, Scripta Mater. 60 (2009) 968-971.

DOI: 10.1016/j.scriptamat.2009.02.021

Google Scholar

[5] M.A. Munoz-Morris, D.G. Morris, Severe plastic deformation processing of Al–Cu–Li alloy for enhancing strength while maintaining ductility, Scripta Mater. 63 (2010) 304-307.

DOI: 10.1016/j.scriptamat.2010.04.022

Google Scholar

[6] W.J. Kim et al., Optimization of strength and ductility of 2024 Al by equal channel angular pressing (ECAP) and post-ECAP aging, Scripta Mater. 49 (2003) 333-338.

DOI: 10.1016/s1359-6462(03)00260-4

Google Scholar

[7] Peter V. Liddicoat et al., Nanostructural hierarchy increases the strength of aluminum alloys, Nature Communications. 10 (2010) 1-7.

Google Scholar

[8] K.L. Kendig, D.B. Miracle, Strengthening mechanisms of an Al-Mg-Sc-Zr alloy, Acta Mater. 50 (2002) 4165-4175.

DOI: 10.1016/s1359-6454(02)00258-6

Google Scholar

[9] C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci. 46 (2001) 1-184.

Google Scholar

[10] L. Lu, M.O. Lai, and C.W. Ng, Enhanced mechanical properties of an Al based metal matrix composite prepared using mechanical alloying, Mater. Sci. Eng. A. 252 (1998) 203-211.

DOI: 10.1016/s0921-5093(98)00676-5

Google Scholar

[11] A. Bhaduri et al., Processing and properties of SiC particulate reinforced Al6. 2Zn2. 5Mg1. 7Cu alloy (7010) matrix composites prepared by mechanical alloying, Mater. Sci. Eng. A. 221 (1996) 94-101.

DOI: 10.1016/s0921-5093(96)10484-6

Google Scholar

[12] M. Brochu, T. Zimmerly, L. Ajdelsztajn, E.J. Lavernia, G. Kim, Dynamic consolidation of nanostructured Al-7. 5%Mg alloy powders, Mater. Sci. Eng. A. 466 (2007) 84.

DOI: 10.1016/j.msea.2007.02.028

Google Scholar

[13] F. Zhou, K.H. Chung, E.J. Lavernia, Processing of nanocrystalline al-based materials by mechanical attrition in liquid nitrogen, Proceedings of the TMS Fall Meeting, 2000. p.167.

Google Scholar

[14] F. Zhou, X.Z. Liao, Y.T. Zhu, S. Dallek, E.J. Lavernia, Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling, Acta Materialia. 51 (2003) 2777.

DOI: 10.1016/s1359-6454(03)00083-1

Google Scholar

[15] F. Zhou, J. Lee, S. Dallek, E.J. Lavernia, High grain size stability of nanocrystalline Al prepared bymechanical attrition, Journal of Materials Research. 16 (2001) 3451.

DOI: 10.1557/jmr.2001.0474

Google Scholar