[1]
F. Musin et al., High strain rate super plasticity in a commercial Al-Mg-Sc alloy, Scripta Mater. 50 (2004) 511-516.
DOI: 10.1016/j.scriptamat.2003.10.021
Google Scholar
[2]
V. Vidal, Z.R. Zhang, and B. Verlinden, Precipitation hardening and grain refinement in an Al-4. 2 wt. % Mg-1. 2 wt. % Cu processed by ECAP, Mater. Sci. 43 (2008) 7418-7425.
DOI: 10.1007/s10853-008-2746-3
Google Scholar
[3]
Y.K. Ito, Z.J. Horita, Microstructural evolution in pure aluminum processed by high-pressure torsion, Mater. Sci. Eng. A. 503 (2009) 32-36.
DOI: 10.1016/j.msea.2008.03.055
Google Scholar
[4]
F.C. Liu, Z.Y. Ma, and L.Q. Cheng, Low-temperature super plasticity of Al-Mg-Sc alloy produced by friction stir processing, Scripta Mater. 60 (2009) 968-971.
DOI: 10.1016/j.scriptamat.2009.02.021
Google Scholar
[5]
M.A. Munoz-Morris, D.G. Morris, Severe plastic deformation processing of Al–Cu–Li alloy for enhancing strength while maintaining ductility, Scripta Mater. 63 (2010) 304-307.
DOI: 10.1016/j.scriptamat.2010.04.022
Google Scholar
[6]
W.J. Kim et al., Optimization of strength and ductility of 2024 Al by equal channel angular pressing (ECAP) and post-ECAP aging, Scripta Mater. 49 (2003) 333-338.
DOI: 10.1016/s1359-6462(03)00260-4
Google Scholar
[7]
Peter V. Liddicoat et al., Nanostructural hierarchy increases the strength of aluminum alloys, Nature Communications. 10 (2010) 1-7.
Google Scholar
[8]
K.L. Kendig, D.B. Miracle, Strengthening mechanisms of an Al-Mg-Sc-Zr alloy, Acta Mater. 50 (2002) 4165-4175.
DOI: 10.1016/s1359-6454(02)00258-6
Google Scholar
[9]
C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci. 46 (2001) 1-184.
Google Scholar
[10]
L. Lu, M.O. Lai, and C.W. Ng, Enhanced mechanical properties of an Al based metal matrix composite prepared using mechanical alloying, Mater. Sci. Eng. A. 252 (1998) 203-211.
DOI: 10.1016/s0921-5093(98)00676-5
Google Scholar
[11]
A. Bhaduri et al., Processing and properties of SiC particulate reinforced Al6. 2Zn2. 5Mg1. 7Cu alloy (7010) matrix composites prepared by mechanical alloying, Mater. Sci. Eng. A. 221 (1996) 94-101.
DOI: 10.1016/s0921-5093(96)10484-6
Google Scholar
[12]
M. Brochu, T. Zimmerly, L. Ajdelsztajn, E.J. Lavernia, G. Kim, Dynamic consolidation of nanostructured Al-7. 5%Mg alloy powders, Mater. Sci. Eng. A. 466 (2007) 84.
DOI: 10.1016/j.msea.2007.02.028
Google Scholar
[13]
F. Zhou, K.H. Chung, E.J. Lavernia, Processing of nanocrystalline al-based materials by mechanical attrition in liquid nitrogen, Proceedings of the TMS Fall Meeting, 2000. p.167.
Google Scholar
[14]
F. Zhou, X.Z. Liao, Y.T. Zhu, S. Dallek, E.J. Lavernia, Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling, Acta Materialia. 51 (2003) 2777.
DOI: 10.1016/s1359-6454(03)00083-1
Google Scholar
[15]
F. Zhou, J. Lee, S. Dallek, E.J. Lavernia, High grain size stability of nanocrystalline Al prepared bymechanical attrition, Journal of Materials Research. 16 (2001) 3451.
DOI: 10.1557/jmr.2001.0474
Google Scholar