Effect of Annealing on Mechanical Properties of Copper Alloys Deformed at Cryogenic Temperature

Article Preview

Abstract:

The effect of annealing treatment on the mechanical properties and microstructure of cold-rolled Cu-20% Zn alloys was investigated in this work. Mechanical properties changed dramatically with the increase of temperature. According to the microhardness test, it can roughly concluded that 150 is the optimal annealing temperature for deformation, at which a uniform elongation increased from 1.4658% before annealing to about 6.89%, and the elongation to failure increased from 7.426% to 16.81% with the same strength almost retained. The changes of microstructure during the annealing process are mainly distributed to the improvement of mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

363-370

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hebesberger T, Stüwe HP, Vorhauer A, Wetscher F, Pippan R. Structure of Cu deformed by high pressure torsion. Acta Mater. 53(2005) 393-402.

DOI: 10.1016/j.actamat.2004.09.043

Google Scholar

[2] Iwahashi Y, Horita Z, Nemoto M, Langdon TG. The process of grain refinement in equal-channel angular pressing. Acta Mater. 46(1998) 3317-3331.

DOI: 10.1016/s1359-6454(97)00494-1

Google Scholar

[3] Kwan C, Wang Z, Kang S-B. Mechanical behavior and microstructural evolution upon annealing of the accumulative roll-bonding (ARB) processed Al alloy 1100. Mater Sci Eng: A. 480(2008)148-159.

DOI: 10.1016/j.msea.2007.07.022

Google Scholar

[4] Wang Y. CM, Zhou F., Ma E. High tensile ductility in a nanostructured metal. Nature. 419(2002)912-915.

DOI: 10.1038/nature01133

Google Scholar

[5] Lu L, You ZS, Lu K. Work hardening of polycrystalline Cu with nanoscale twins. Scripta Mater. 66(2012)837-842.

DOI: 10.1016/j.scriptamat.2011.12.046

Google Scholar

[6] Meyers MA, Vöhringer O, Lubarda VA. The onset of twinning in metals: a constitutive description. Acta Mater. 49(2001)4025-4039.

DOI: 10.1016/s1359-6454(01)00300-7

Google Scholar

[7] Rohatgi A, Vecchio KS, Gray GT. The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery. Metall Mater Tran A. 32(2001)135-145.

DOI: 10.1007/s11661-001-0109-7

Google Scholar

[8] Zhao YH, Liao XZ, Horita Z, Langdon TG, Zhu YT. Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu–Zn alloys. Mater Sci Eng: A. 493(2008)123-129.

DOI: 10.1016/j.msea.2007.11.074

Google Scholar

[9] Xiaoxu Huang NH, Nobuhiro Tsuji. Hardening by Annealing and Softening by Deformation in Nanostructured Metals. Science. 312(2006) 249-251.

DOI: 10.1126/science.1124268

Google Scholar

[10] Zhao K, Lou LH, Ma YH, Hu ZQ. Effect of minor niobium addition on microstructure of a nickel-base directionally solidified superalloy. Mater Sci Eng: A. 476(2008)372-377.

DOI: 10.1016/j.msea.2007.06.041

Google Scholar

[11] Williamson G, Smallman R. III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos Mag. 1(1956)34-46.

DOI: 10.1080/14786435608238074

Google Scholar

[12] Cohen JB, Wagner C. Determination of Twin Fault Probabilities from the Diffraction Patterns of fcc Metals and Alloys. J Appl Phys. 33(1962)2073-(2077).

DOI: 10.1063/1.1728897

Google Scholar

[13] Zhao YH, Liao XZ, Jin Z, Valiev RZ, Zhu YT. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Mater. 52(2004)4589-4599.

DOI: 10.1016/j.actamat.2004.06.017

Google Scholar

[14] Ni S, Wang YB, Liao XZ, Alhajeri SN, Li HQ, Zhao YH, et al. Strain hardening and softening in a nanocrystalline Ni–Fe alloy induced by severe plastic deformation. Mater Sci Eng: A. 528(2011)3398-3403.

DOI: 10.1016/j.msea.2011.01.017

Google Scholar

[15] Li YS, Zhang Y, Tao NR, Lu K. Effect of the Zener–Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation. Acta Mater. 57(2009)761-772.

DOI: 10.1016/j.actamat.2008.10.021

Google Scholar

[16] Hall EO. The Deformation and Ageing of Mild Steel: III Discussion of Results. Proc Phys Soc B. 64(1953) 747.

Google Scholar

[17] Xiao GH, Tao NR, Lu K. Effects of strain, strain rate and temperature on deformation twinning in a Cu–Zn alloy. Scripta Mater. 59(2008)975-978.

DOI: 10.1016/j.scriptamat.2008.06.060

Google Scholar

[18] Shen YF, Lu L, Lu QH, Jin ZH, Lu K. Tensile properties of copper with nano-scale twins. Scripta Mater. 52(2005): 989-994.

DOI: 10.1016/j.scriptamat.2005.01.033

Google Scholar

[19] Yamakov V, Wolf D, Phillpot SR, Gleiter H. Dislocation–dislocation and dislocation–twin reactions in nanocrystalline Al by molecular dynamics simulation. Acta Mater. 51 (2003)4135-4147.

DOI: 10.1016/s1359-6454(03)00232-5

Google Scholar

[20] Kaschner GC, Tomé CN, Beyerlein IJ, Vogel SC, Brown DW, McCabe RJ. Role of twinning in the hardening response of zirconium during temperature reloads. Acta Mater. 54 (2006)2887-2896.

DOI: 10.1016/j.actamat.2006.02.036

Google Scholar

[21] Youngdahl CJ, Weertman JR, Hugo RC, Kung HH. Deformation behavior in nanocrystalline copper. Scripta Mater. 44( 2001)1475-1478.

DOI: 10.1016/s1359-6462(01)00712-6

Google Scholar

[22] Lu L, Sui ML, Lu K. Cold rolling of bulk nanocrystalline copper. Acta Mater. 49(2001)4127-4134.

DOI: 10.1016/s1359-6454(01)00248-8

Google Scholar

[23] Zhu YT, Liao XZ, Wu XL. Deformation twinning in nanocrystalline materials. Prog Mater Sci. 57 (2012)1-62.

Google Scholar

[24] San XY, Liang XG, Cheng LP, Li CJ, Zhu Xk. Temperature effect on mechanical properties of Cu and Cu alloys. Mater Des. 35(2012)480-483.

DOI: 10.1016/j.matdes.2011.08.032

Google Scholar

[25] H. Miura TS, S. Maruoka and J.J. Jonas. production pf recystallization nano-grains in a fine-grained Cu-Zn alloy. Philo Mag Lett. 90(2009)93-101.

DOI: 10.1080/09500830903459648

Google Scholar

[26] Y Nakao HMaTS. Adv Mater Res. 2007(2007)649.

Google Scholar

[27] An X.H., Han W.Z. CXH. high strength and utilizable ductility of bulk ultrafine-grained Cu-Al alloys. App Phys Lett. 92 (2008) 201915 - 201915-3.

DOI: 10.1063/1.2936306

Google Scholar

[28] C. Kobayashia TS, A. Belyakovab & H. Miuraa. Ultrafine grain development in copper during multidirectional forging at 195 K. Philo Mag Lett. 87 (2007) 751-766.

DOI: 10.1080/09500830701566016

Google Scholar

[29] D.P. Field LTB, M.M. Nowell , T.M. Lillo. The role of annealing twins during recrystallization of Cu. Acta Mater. 55 (2007) 4233–4241.

DOI: 10.1016/j.actamat.2007.03.021

Google Scholar

[30] Tao JM. the Research of Fabrication and Properties of Nanostructured Copper and Copper Alloys. (2012).

Google Scholar

[31] Jia D, Wang Y, Ramesh K, Ma E, Zhu Y, Valiev R. Deformation behavior and plastic instabilities of ultrafine-grained titanium. Appl Phys Lett. 79(2001)611.

DOI: 10.1063/1.1384000

Google Scholar

[32] Hart EW. Theory of the tensile test. Acta Metall. 15 (1967)351-355.

Google Scholar

[33] Wang YM, Hamza AV, Ma E. Activation volume and density of mobile dislocations in plastically deforming nanocrystalline Ni. Appl Phys Lett. 86(2005)241917-3.

DOI: 10.1063/1.1946899

Google Scholar

[34] Dalla Torre F, Spätig P, Schäublin R, Victoria M. Deformation behaviour and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel. Acta Mater. 53(2005)2337-2349.

DOI: 10.1016/j.actamat.2005.01.041

Google Scholar

[35] Huang Xiaoxu , Nobuhiro Tsuji. Hardening by Annealing and Softening by Deformation in Nanostructured Metals. Science. 312(2006) 249-251.

DOI: 10.1126/science.1124268

Google Scholar

[36] Zeng W, Shen Y, Zhang N, Huang X, Wang J, Tang G, et al. Rapid hardening induced by electric pulse annealing in nanostructured pure aluminum. Scripta Mater. 66( 2012)147-150.

DOI: 10.1016/j.scriptamat.2011.10.023

Google Scholar

[37] Ma E, Wang Y, Lu Q, Sui M, Lu L, Lu K. Strain hardening and large tensile elongation in ultrahigh-strength nano-twinned copper. Appl Phys Lett. 85(2004)4932-4934.

DOI: 10.1063/1.1814431

Google Scholar

[38] Zhu T, Li J, Samanta A, Kim HG, Suresh S. Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc National Aca Sci. 104(2007)3031.

DOI: 10.1073/pnas.0611097104

Google Scholar

[39] Dao M, Lu L, Shen YF, Suresh S. Strength, strain-rate sensitivity and ductility of copper with nanoscale twins. Acta Mater. 54(2006)5421-5432.

DOI: 10.1016/j.actamat.2006.06.062

Google Scholar