[1]
K. Dai, L. Shaw, Analysis of fatigue resistance improvements via surface severe plastic deformation. Int. J. Fatigue. 30 (2008) 1398-1408.
DOI: 10.1016/j.ijfatigue.2007.10.010
Google Scholar
[2]
N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu, An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater. 50 (2002) 4603-4616.
DOI: 10.1016/s1359-6454(02)00310-5
Google Scholar
[3]
T. Roland, D. Retraint, K. Lu, J. Lu, Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scripta Mater. 54 (2006) 1949-(1954).
DOI: 10.1016/j.scriptamat.2006.01.049
Google Scholar
[4]
T.H. Fang, W.L. Li, N.R. Tao, K. Lu, Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science. 331 (2011) 1587-1590.
DOI: 10.1126/science.1200177
Google Scholar
[5]
K. Shiozawa, L. Lu, Very high-cycle fatigue behavior of shot-peened high-carbon-chromium bearing steel. Fatigue Fract. Engng Mater. Struct. 25 (2002) 813-822.
DOI: 10.1046/j.1460-2695.2002.00567.x
Google Scholar
[6]
W.L. Li, N.R. Tao, K. Lu, Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment. Scripta Mater. 59 (2008) 546-549.
DOI: 10.1016/j.scriptamat.2008.05.003
Google Scholar
[7]
A. Ferro, G. Montalenti, Fatigue of pure iron and of iron containing a small quantity of carbon after strain ageing, Philosophical Magazine. 8 (1963) 105-119.
DOI: 10.1080/14786436308212492
Google Scholar
[8]
N.A. Fleck, K.J. King, M.F. Ashby, The cyclic properties of engineering materials. Acta Mater. 42 (1994) 365-381.
Google Scholar
[9]
H.A. Ra, A. Plumtree, The influence of deformation rate on the cyclic behavior of pure iron. Metallurgical transactions. 2 (1971) 1863-1867.
DOI: 10.1007/bf02913417
Google Scholar
[10]
W.J. Lee, Y.W. Chung, M.E. Fine, Effect of environment and grain size on cyclic deformation and surface hardening of iron. Metallurgical Transactions. 19A (1988) 337-344.
DOI: 10.1007/bf02652543
Google Scholar
[11]
S, Suresh, fatigue of materials, second ed. Cambridge University Press. (1998).
Google Scholar
[12]
K. Tanaka, A theory of fatigue crack initiation at inclusions. Metall. Trans. A 13 (1982) 117-123.
Google Scholar
[13]
H. Mughrabi, Fatigue, an everlasting materials problem - still en vogue. Procedia Engineering. 2 (2010) 3-26.
DOI: 10.1016/j.proeng.2010.03.003
Google Scholar